
DTE Firewalls
Phase Two Measurement and Evaluation Report

Timothy J. Fräser
Michael J. Petkac

Wayne G. Morrison
M. Lee Badger

Ben Uecker
Eve L. Cohen
John Grillo

Karen A. Oostendorp
Kelly C. Djahandari
Thomas P. Horvath

Calvin Ko
David L. Sherman

Christopher D. Vance

Trusted Information Systems
3060 Washington Road (Rt. 97)

Glenwood, MD 21738

TIS Report #0682

Copyright ©

July 22, 1997

DTIC QUALITY 1NBFEÜW1D Ä

PtSTTRBUTION STA'lt'MESr A

Approved for public release;
Distribution Unlimited 19980123 043

Executive Summary

This document is the second of three progress reports concerning the DARPA contract DABT63-
95-C-0018 "Internet Safety and Security Task: Internet Safety Through Type-Enforcing Firewalls."
The goals of this project are to assess the security and practicality of DTE firewalls - an advanced
firewall technology based on Domain and Type Enforcement (DTE), and to construct a DTE firewall
prototype. The first phase of the project demonstrated how DTE firewalls enabled secure enclaves
to extend limited trust relationships to entities outside their perimeters, allowing organizations
to safely import and export a greater variety of services than would be practical with traditional
firewalls. The second phase takes this concept a step further by providing the infrastructure needed
to create a secure virtualization of enclaves which we refer to as enterprise zones.

The enterprise zone concept is a tool which allows carefully-controlled collaboration between or-
ganizations. Enterprise zones are distributed computing environments which may span two or
more DTE firewall-protected enclaves. An enterprise zone provides user processes with carefully-
controlled access to a well-defined subset of the resources belonging to each organization that
sponsors the enterprise zone. It also allows user processes which are distributed among several
firewall-protected enclaves to communicate as securely as if they were physically located in the

same enclave.

July 22, 1997

Contents

1 Introduction

1.1 Enterprise Zones 1

1.2 DTE Firewall Technology Overview 2

1.3 Phase One Scenario 4

1.4 Phase Two Scenario 6

2 Dynamic Policy Modules 10

2.1 Policy Configuration with Dynamic Policy Modules 10

2.2 Inter-module Dependency Restrictions 14

2.3 Module Behavior Restrictions I9

3 Encryption 21

3.1 Description of IPSec 21

3.2 Description of DTE/IPSec 21

3.3 IPSec Key Management in DTE 25

4 Phase Two Scenario (Expanded) 26

4.1 Base Modules 27

4.2 Dynamic Module Specification 28

5 Measurement and Evaluation 30

5.1 Network Services 31

5.2 Dynamic Policy Modules 37

5.3 Encryption • • • • 39

July 22, 1997 iii

6 Work in Progress 44

6.1 Domain Type Authority 44

6.2 TIS Firewall Toolkit Enhancement 44

6.3 Dynamic Module Parameterization 45

6.4 Configurable Kernel Meta-policies 46

6.5 Relaxed Dependency Restrictions 46

A Strider Base Policies 48

A.l Firewall Policy 48

A.2 Host Policy 52

B Strider Dynamic Modules 56

B.l Firewall Dynamic Module 56

B.2 Host Dynamic Module 59

C Minimal Test Policy 61

July 22, 1997 iv

1 Introduction

This document is the second of three measurement and evaluation reports concerning the DARPA
contract DABT63-95-C-0018 "Internet Safety and Security Task: Internet Safety Through Type-
Enforcing Firewalls." The goals of this project are to assess the security and practicality of Domain
and Type Enforcement (DTE) firewalls - an advanced firewall technology based on Domain and
Type Enforcement[8], and to construct a DTE firewall prototype. The first phase of the project
demonstrated how DTE firewalls enabled DTE-protected enclaves to extend limited-trust relation-
ships to entities outside of their perimeters, allowing organizations to safely import and export a
greater variety of services than would be practical with traditional firewalls[4]. The second phase of
the DTE firewalls project takes this concept a step further by providing the infrastructure needed
to create enterprise zones. An enterprise zone is a shared, possibly distributed, DTE execution
environment that enforces a limited trust relationship between two or more enterprises.

The remainder of this section explains the enterprise zone concept, and describes how the phase
two DTE firewall prototype uses its new dynamic policy configuration and cryptographic features
to support it. Detailed information on the new dynamic policy configuration features may be found
in section 2. Section 3 discusses the new cryptographic features, and section 4 describes the phase
two prototype testbed. Finally, section 5 presents measurement and evaluation results for phase
two DTE firewalls.

1.1 Enterprise Zones

An enterprise zone may be supported by a collection of hosts from two or more DTE firewall-
protected enclaves, which are bound together in a limited trust relationship by their DTE firewalls.
This relationship allows them to safely share a subset of their resources; in general, DTE fire-
walls and hosts may support multiple concurrent and independent enterprise zones. As described
in section 3, the firewalls cryptographically protect messages passing between physical enclaves.
Within each enclave, DTE provides access control over local resources. The combination of these
techniques effectively allows all of the programs within an enterprise zone to communicate as safely
as if they were behind the same firewall, regardless of their physical location. Figure 1 contains
a diagram of two DTE firewall-protected enclaves supporting a single enterprise zone. In the di-
agram, rectangles represent hosts, solid lines represent network communication, circles represent
actual enclave boundaries, and the dashed line represents the enterprise zone boundary.

In addition to providing protection from outsiders, enterprise zones support controlled collaboration
between organizations which are sometimes partners and sometimes competitors. For example, two
organizations cooperating on a joint project might create an enterprise zone to support the project's

July 22, 1997

Figure 1: Two DTE Firewall-protected Enclaves Supporting an Enterprise Zone

activities. Each organization would specify which of its resources it would share with its partner
in the enterprise zone. They would also specify how their partner would be allowed to use those
resources. The DTE firewalls which support the enterprise zone would ensure that this resource-
sharing policy was enforced at all times. Enterprise zones are an economically-attractive tool, since
they allow organizations to make some of their existing resources available for collaboration, instead
of requiring them to dedicate separate resources for the sake of security.

Enterprise zones are apt to be transient entities. In typical collaborative situations, the organiza-
tions involved want to share their resources for the duration of the project, and then cease sharing
once it is done. In order to support rapid policy changes of this kind, the phase two DTE firewall
prototype provides the ability to create and destroy secure enterprise zones dynamically.

1.2 DTE Firewall Technology Overview

As described by the DTE firewall architecture[12] and the phase one report[4], DTE firewalls are a
combination of Domain and Type Enforcement (DTE) and application gateway firewall technology.
DTE is an enhanced form of type enforcement, a table-oriented access control mechanism[8]. As
with type enforcement, the DTE kernel views its system as a collection of active entities (e.g.
processes), called subjects, and a collection of passive entities (e.g. files), called objects. Subjects
are described as active entities because they may access objects (by reading or writing) and interact
with other subjects (e.g., through signals.) Every DTE kernel has a security policy which defines a
set of domains and a set of types. The kernel associates every subject with exactly one domain, and

July 22, 1997

every object with exactly one type. Each domain describes how the policy constrains the behavior
of the subjects that are associated with that domain. For example, a domain might list what kinds
of accesses its subjects are allowed for objects of each type. It might also list which signals its
subjects may send to subjects associated with other domains. The kernel will only allow a subject
to behave in a manner that is consistent with the policy described by its domain.

Domains describe secure environments which the kernel presents to user processes. Each environ-
ment gives processes access to a particular well-defined set of resources. The DTE kernel's ability
to provide separate secure environments forms the basis of the separation provided by enterprise
zones. In reality, enterprise zones are distributed secure environments constructed from a collection
of equivalent secure local environments supported by DTE firewalls. When processes running in
an enterprise zone interact with servers located outside of their physical enclave's perimeter, their
requests are mediated by application proxies on the intervening DTE firewalls. The local secure
environments on the DTE firewalls specify which resources are available to the proxies, which in
turn limits the resources available to the processes they serve. A more detailed description of DTE
and the secure user environments it provides may be found in [7].

The security policies enforced by DTE kernels are configurable. At boot time, a DTE kernel reads
a description of the policy it will enforce from a file. This description is written in the DTE
Language (DTEL)[9]. Administrators can use DTEL to describe a policy that provides the secure
environments they need by specifying the appropriate domains and types, and the relationships
between them. This configurability also allows administrators to create enterprise zones which
provide secure environments that are tailor-made for a particular task or mission.

DTEL's structure resembles the structure of a programming language. It provides modules to break
large policy descriptions into manageable parts, similar to the way some programming languages
provide procedures to organize code. The phase two prototype uses this modularity as the basis
for its dynamic policy configuration support. As described in section 2, the phase two DTE kernel
allows administrators to change its security policy incrementally as it runs by loading and unloading
dynamic policy modules. Dynamic policy modules are syntactically similar to phase one DTEL
modules. Each module can describe the policy for a particular task or activity, such as support for
a specific enterprise zone. When an administrator loads a particular module, the policy it describes
becomes part of the kernel's security policy. An administrator may reverse the changes to the
kernel's policy by unloading the module. Administrators may create and destroy enterprise zones
as the kernel runs by loading and unloading the dynamic policy modules that define them.

The first phase of the DTE firewall project developed the infrastructure required to allow an
organization to extend limited trust relationships to entities outside of its DTE firewall-protected
enclave. This support for trans-firewall trust allows organizations to safely import and export a
greater variety of services than would be possible with traditional firewall technology. This ability

July 22, 1997

is an essential part of the phase two DTE firewall prototype's support for enterprise zones.

For example, a group of organizations may wish to support an enterprise zone which provides a
consistent set of shared resources to all of its processes regardless of their location. In order to
make the shared resources available throughout the enterprise zone, each organization must export
services to the other organizations, and the other organizations must import them. A DTE firewall's
ability to extend limited trust relationships outside of its perimeter allows it to support these kinds
of import and export relationships while enforcing each organization's resource-sharing policy.

1.3 Phase One Scenario

The phase one measurement and evaluation report presented a scenario which involved two fictitious
organizations seeking to collaborate on a project by sharing some of their resources. The first
organization was Strider Sprockets. Strider operated a DTE-aware host inside of a DTE firewall-
protected enclave. The second organization was Strider's long-time competitor, Donalds Cogs,
which operated a DTE-aware host outside of the Strider enclave. The two companies wished to
pool a small portion of their private resources in order to co-develop a new product called a Gizmo,
while keeping the balance of their private resources secret from each other.

The scenario demonstrated the phase one DTE firewall's ability to extend limited trust relationships
to hosts outside of its security perimeter. This ability allowed the Strider firewall to export more
services to the Donalds host, and import more services from it, than would have been prudent with
a normal firewall. By importing and exporting each other's services, Strider and Donalds were able
to conveniently share their resources.

In order to accomplish this limited sharing of resources, the two companies divided their data
into two parts - one to share with their partner and one to keep private. Both companies created
security policies which would enforce this separation on their hosts. Each host loaded a description
of this policy at boot time. The Strider host policy, for example, associated the gizmo J DTE type
with its shared Gizmo project data, and the stridJ DTE type with its private data. The policy
also provided a gizmo A DTE domain for the Strider and Donalds employees working on the Gizmo
project, and a strid-d domain strictly for Strider employees. In the phase one scenario, the two
companies essentially implemented a statically specified enterprise zone for the joint project. A
fragment of Strider's host policy (leaving out some system details) resembles:

July 22, 1997

policy strider_host_p; /* this policy is loaded when the kernel boots */
type strid_t; /* the type for all Strider proprietary data */
type gizmo_t; /* the type for all shared Gizmo project data */

domain strid_d = (crwxd->strid_t), /* strid_d users access strid_t */
(rd->gizmo_t); /* and can read gizmo_t */

domain gizmo_d = (crwxd->gizmo_t); /* gizmo_d users access only gizmo_t */

As indicated by the policy fragment, the gizmo-d domain gave the Gizmo workers access to the
shared resources they needed, but denied them access to private Strider resources. The strid-d
domain gave Strider employees access to private Strider resources and allowed observation of the
gizmoJ, data, without allowing them to make these private resources available to users in the
gizmo^d domain. The Donalds hosts used a similar policy, with a donJ, and don-d substituted for
stridJ, and strid-d. Both companies' policies also included an anonJ type and an anonA domain
intended for anonymous users, to allow them to retrieve publicly-available information from their
hosts.

Figure 2 contains a diagram of the phase one scenario testbed. In the diagram, squares represent
hosts, and the circle represents the Strider DTE firewall-protected enclave boundary. Each host
square is labeled with the DTE domains it supports. Dotted lines represent network communication
between hosts. These lines are drawn between pairs of domains, since the Donalds and Strider
policies allowed processes on different hosts to communicate only with peers in the same domains
(however, some information flow is allowed between domains since the more sensitive domains may
observe, but not modify or execute, data from less sensitive domains.

In the operational testbed, the DTE kernels on the hosts and firewalls ensured that users were
confined to their domains according to their security policy. Strider's DTE firewall policy allowed
it to pass mail, NFS, FTP, HTTP, TELNET, and rlogin traffic between the Strider and Donalds
DTE hosts, provided the transported data was of the alliance shared gizmo J or the public anonJ
type. The phase one prototype operated under the assumption that the secrecy and integrity of
the data passing over its networks was assured. As described in section 3, the phase two prototype
uses cryptography to provide the integrity and confidentiality that was only assumed in phase one.

The Strider DTE host policy ensured that exporting services to the Donald's corporation for the
shared gizmo J, type would not compromise the secrecy or integrity of the private stridJ data. The
exported services were isolated in the gizmo-d domain on the DTE host, which had no access to
the stridJ, data type.

July 22, 1997

Donalds Host

*-

Strider Enclave

DTE Host

^ ^.

DTE
Firewall

---*

DTE Host

(Inn it strid_d s*ri<l_ci

IMSÄiiil anoa.d anon_d
gtemoji glzmo_d f>(7ttitt rt

Domain

-« ►- Non-encrypted Communication

Figure 2: Phase One Scenario Testbed

1.4 Phase Two Scenario

The phase two scenario extends the phase one scenario to demonstrate new features provided by
the phase two prototype. In the phase two scenario, Donalds and Strider form an enterprise zone
to support their collaborative Gizmo project. This enterprise zone allows the two organizations to
safely share their resources, as before, and also provides cryptography to protect the secrecy and
integrity of Gizmo project data as it passes over the networks between their hosts. In addition,
the phase two prototype's support for dynamic policy modules provides a convenient and scalable
means to create and destroy enterprise zones without disrupting the availability of system services.

The phase two testbed consists of two DTE firewall-protected enclaves, one for the Strider organi-
zation and one for the Donalds organization. Each enclave consists of a DTE application gateway
firewall and a DTE-aware host running inside the firewall security perimeter. A diagram of the
phase two testbed is shown in figure 3. In the diagram, squares represent hosts, and circles represent
physical enclave boundaries. Each host square is labeled with the names of the DTE domains it
supports. Solid lines represent encrypted network communication; dashed lines represent network

July 22, 1997

communication without encryption.1 The permanent domains that are configured at boot time are
shown as shaded regions. The transient domains originating in dynamic modules are not shaded.

Donalds Enclave Strider Enclave

DTE Host

gizmo_acct_d
gizmo_eng_d
gizmo_proj_

DTE Firewall
floH Cl

siBöMlä:#i
gizmo_acct_d
gizmo_eng_d
gizmo_proj_d

DTE Firewall
lii$l!§Biiili

>—i
WääiiMiMi
gizmo_acct_d
gizmo_eng_d
gizmo_proj_d

DTE Host
sttid„d
aium_d
gizmo_acct_d
gizmo_eng_d
gizmo_proj_d

Domain
Domain from Dynamic Module
Encrypted Communication
Non-encrypted Communication -----

Figure 3: Phase Two Scenario Testbed

In the testbed scenario, Donalds and Strider create an enterprise zone which encompasses resources
provided by the two hosts and the two firewalls. This enterprise zone is composed of three shared
distributed environments, each of which corresponds to a domain shown in the diagram. There
is a gizmo-acct-d domain for the accountants, a gizmo.eng.d domain for the engineers, and a
gizmojproj.d domain for the managers. Each environment gives its users access to the data they
need from both physical enclaves, while protecting it from outsiders.

The gizmo project data is divided into three categories, each associated with its own DTE type.
There is a gizmo„rates J, type for the accounting data, a gizmo.engJ type for the engineering data,
and a gizmo.budgetA type for the project management data. Whenever data of these three types is
transferred over the network, it is encrypted with a shared key named gizmoJt. The diagram also

1Use of encryption within an enclave is optional.

July 22, 1997

shows a don.d domain and donJ, type for Donalds proprietary operations and data, and a similar
strid-d and strid-t for Strider. Finally, both enclave's policies provide an anon-d domain and an
anonJ type for anonymous users and public information. A fragment of the policy for the Strider
host is approximately:

policy strider_host_p;
type strid_t;
type anon_t;

/* this policy is loaded when the kernel boots */
/* the type for all Strider proprietary data */
/* the type for all publicly available data */

domain strid_d = (crwxd->strid_t); /* strid_d users access only strid.t */
domain anon_d = (crwxd->anon_t); /* anon_d users access only anon_t */

module gizmo_ve_m;
type gizmo_rates_t;

type gizmo_eng_t;
type gizmo_budget_t;

/* this policy is loaded as the kernel runs */
/* the type for Gizmo accounting data */

/* the type for Gizmo engineering data */

/* the type for Gizmo management data */

domain gizmo_proj_d = (crwxd->gizmo.budget_t), /* control budget data */
(rd->gizmo_rates_t), /* observe rates data */
fi-^_s<T-i vmr\ a-nrr +■ ^ • /* nhsoTiro oncriTieorincr riat.a */
(rd->gizmo_ _ .
(rd->gizmo_eng_t); /* observe engineering data */

domain gizmo_acct_d = (crwxd->gizmo_rates_t), /* control rates data
(rd->gizmo_budget_t); /* observe budget data. •■•/

domain gizmo_eng_d = (crwxd->gizmo_eng_t); /* control engineering data */

*/
*/

domain strid.d += (rd->gizmo_eng_t); /* augment strid_d to allow */
/* Strider staff to observe */

/* Gizmo technical data. */

/* This (56-bit) key is used to encrypt Gizmo data traveling between

/* enclaves.
key esp gizmo.k = (0xi234567890abcdef 0xla2b3c4d5e6f0789)

-> gizmo.budget_t, gizmo_rates_t, gizmo_eng_t;

*/
*/

In the phase one prototype, the primary method for kernel security policy alteration was to manually
edit the policy specification and reboot the kernel for the updated policy to take effect.2 This

2Although the phase one DTE dtmod development tool still exists to modify a running DTE policy, the tool is
intended for debugging security policies. It is not intended for use in a production system.

July 22, 1997

restriction is impractical for operational systems. The partnership described in the phase one and
two scenarios focuses on the formation of a single alliance. In practice, however, organizations
may take part in many concurrent alliances. These partnerships must be created and dissolved at
varying rates within each organization. Some trust relationships may only exist for a short duration.
Restructuring the policy and rebooting kernels for each change would result in an undesirable and
impractical loss of service.

The phase two prototype addresses this deficiency with support for dynamic policy modules. The
DTE policy presented in the phase one scenario was highly modular. It demonstrated how relatively
independent modules could be designed and combined to produce custom DTE configurations to
meet the needs of an organization. This beneficial use of modularity laid the foundation for phase
two dynamic modularity development. The phase two scenario policy encapsulates its specification
of the Gizmo enterprise zone in separate dynamic policy modules. This arrangement allows the
Donalds and Strider administrators to create the secure virtual enclave by loading the appropriate
dynamic policy modules. Similarly, when the Gizmo project ends, they may destroy the enterprise
zone by unloading the modules. As shown in 3, the gizmo.proj.d, gizmo.acct^d, and gizmo.eng.d
domains are transient whereas the other domains are permanent (i.e. would require a reboot to
change).

The Gizmo enterprise zone provides its users with the Donalds and Strider resources they need to
work. It also prevents private Strider and Donalds data from leaking to the opposite company, and
it protects Gizmo project data from outsiders. Section 4 describes the operation of the phase two
prototype testbed in more detail.

July 22, 1997

2 Dynamic Policy Modules

The phase two DTE kernel provides administrators with the ability to change a kernel's security
policy in a controlled fashion by loading and unloading dynamic policy modules. These modules
are syntactically similar to the DTEL modules provided by the phase one prototype to organize
policy specifications into logical units.3 The DTE kernel allows (only) a privileged administrator
to load a dynamic policy module described by a DTEL module specification. Once loaded, the
module's contents become part of the kernel's security policy. Similarly, the kernel allows a privi-
leged administrator to unload a dynamic policy module. The act of unloading a module removes
the policy elements it defines from the kernel's security policy.

Section 2.i explains how administrators may use dynamic policy modules to modify a kernel's
security policy. Section 2.2 describes the limits the DTE kernel places on dependency relationships
between dynamic policy modules, and how these restrictions affect the prototype's functionality.
Finally, section 2.3 discusses how the kernel restricts the kinds of policy statements dynamic policy
modules may contain in order to protect the integrity of the static security policy it loads at boot
time.

2.1 Policy Configuration with Dynamic Policy Modules

The phase two prototype provides administrators with two utility programs, dtload and dtunload,
for dynamic security policy configuration. These programs allow administrators to keep pace with
their organization's changing security policy requirements without kernel reboots and system down-
time. Section 2.1.1 describes how the act of loading a dynamic module affects a kernel's security
policy. Section 2.1.2 discusses how dynamic policy modules can be used to encapsulate the policy
governing particular projects or activities (such as support for enterprise zones), and how the
loading and unloading of a particular module can be used to turn a kernel's policy support for a
particular project on and off. Finally, section 2.1.3 describes how a kernel unloads a dynamic policy
module, and the effect this action has on the kernel's processes and file system.

2.1.1 Loading

The dtload command allows an administrator to load a specified dynamic policy module. Due
to the security-critical nature of dynamic policy configuration, the kernel will service the dtload
command's module load requests only if the command is run in a domain which has the privload

3The differences between dynamic policy modules and standard phase one modules are described in sections 2.2
and 2.3.

July 22, 1997 10

privilege. The act of loading a module adds all of the policy constructs (types, domains, domain
attributes, DTE systems, IP address attribute assignments, key bindings, and key definitions)
specified in the module to the kernel's security policy. Modules can add new domains to the
kernel's policy, and they can add new attributes to existing domains. For example, the following
DTEL basejpolicyjp fragment describes a policy that a kernel might load at boot time. It defines a
type named unixJ, and a domain named unixA. The accompanying module fragment dynamicjm
represents a dynamic policy module that an administrator might subsequently load to extend the
policy described by base^policy.p. It defines a new domain named rebooted, and augments the
existing unix-d domain with a new auto right.

policy base_policy_p;
type unix_t;

domain unix_d = (/bin/csh),
(crwxd->unix_t), privauth,
privload, privswapon;

module dynamic_m;
assumes type unix_t;
assumes domain unix_d;

domain reboot_d = (/sbin/reboot),
(crwxd->unix_t), privreboot;

domain unix_d += (auto->reboot_d);

After an administrator uses the dtload command to load the dynamicjm module, the rebooted
domain and unix.d's new auto right become part of the kernel's policy. The kernel's policy then
exhibits identical policy enforcement behavior to a kernel which simply loads the following com-
binedjpolicyjp at boot time:

policy combined_policy_p;
type unix_t;

domain unix_d = (/bin/csh), (crwxd->unix_t), (auto->reboot_d),
privauth, privload, privswapon;

domain reboot_d = (/sbin/reboot), (crwxd->unix_t), privreboot;

The module dynamicjm also demonstrates the concept of module "glue." Module "glue" consists
of DTEL statements whose purpose is to connect a module's policy and the kernel's policy together
into a single working whole. In addition to the statements which define its new rebooted domain,
dynamicjm contains a statement which augments the unixA domain with the auto right to reboot-d.
This statement is glue - it is necessary to make reboot-d a useful part of the kernel's policy. Without
the auto right, it would be impossible for reboot processes to transition from unix.d to rebooted.
Since reboot processes would never be able to enter the rebooted domain, the dynamicjm module

July 22, 1997 11

would not have any real effect on the kernel's policy enforcement behavior. Most dynamic modules
contain statements like this one, which they use to glue themselves into the kernel's existing policy.

Dynamic policy modules provide needed flexibility. They also, however, complicate the task of
recovering the phase two prototype's policy state on reboot. When a kernel boots, it reads its
initial policy state from disk. However, any prior policy state which resulted from dynamic module
loading before the boot is not automatically recovered in this fashion. The solution currently under
development involves keeping a log of dynamic policy module load and unload operations along
with copies of the modules themselves on disk. On reboot, the kernel can use this information to
reload all of the modules required to rebuild its former policy state. Section 2.2 describes how the
phase two prototype simplifies this process by ensuring that the order in which a group of dynamic
policy modules are loaded has no effect on the resulting policy state.

2.1.2 Dynamic Policy Configuration

Dynamic policy modules are the atomic unit of policy change. Typically, when administrators
need to extend a policy to govern a new activity, they will encapsulate the extension in a dynamic
policy module. For example, the following module creates a secure environment for a small group
of accountants charged with completing a semi-annual auditing task:

module audit_m; /* policy governing temporary audit task */
assumes domain user_c; /* glue: holds basic rights needed to use system */
assumes domain login.d; /* glue: the login program runs in this domain */
type audit_t; /* new type for audit data */

/* audit_d describes the user environment for auditors */
domain audit_d = (/bin/csh), (crwxd->audit_t), user.c;

/* glue: exec right allows login to put auditors into audit_d */
domain login_d += (exec->audit_d);

/* huey, luey, and duey are the systems used by auditors, and audit_k *
* is the key used to encrypt the audit_t data flowing between them. */

dte.systems (huey, 11.22.33.1), (luey, 11.22.33.2), (duey, 11.22.33.3);
key esp audit.k = (0xl234567890abcdef 0xla2b3c4d5e6f0789) -> audit_t;

The module specifies a domain for the auditors' processes (audited), and a type for their data
(auditJ.) It also specifies that the machines huey, luey, and duey are DTE systems at the auditors'

July 22, 1997 12

disposal, and that the auditJ, data passing between them will be encrypted with the key audit-k.
A small part of the module specification acts as glue between the module and the base policy.
The module assumes a component called user.c, which is supposed to contain the minimum set of
rights all users need to do work on the system (such as the ability to run the programs in /bin
and /usr/bin.) By adding user.c to audited, the module makes it possible for auditors to run the
programs they need to get work done in the audit.d domain. Also, the module augments the login.d
domain with the right to exec programs into the audit-d domain, which allows the login program
to place auditors into audit.d after they have logged in.4

When all of its parts are considered together, the module describes the complete policy for pro-
tecting the confidentiality and integrity of the auditors' data. Administrators can load the audit.m
module on huey, luey, and duey, and these systems will enforce the specified policy. When the
auditors finish their task, and they no longer require their secure environment, the administrators
can destroy the environment by unloading the module.

2.1.3 Unloading

An administrator may unload a specified dynamic policy module using the dtunload command.
As with dtload, the kernel will service the dtunload command's module unload requests only if
the command is run in a domain which has the privload privilege. The act of unloading a module
removes all of the policy constructs it introduced from the kernel's security policy. In terms of the
basejpolicyjp and dynamic.m policy fragments found on page 11, after a kernel loads basejpolicyjp
and dynamic jm, and then unloads dynamism, its policy enforcing behavior will be identical to a
kernel which simply enforces basejpolicyjp.

When the kernel loads a dynamic policy module, it may introduce new domains and types into the
kernel's security policy. Until the kernel unloads the module, it will enforce the policy concerning
the processes and data associated with these new domains and types. However, when the kernel
unloads the module, these domains and types will no longer be a part of its policy. This raises the
question of what should be done with the associated processes and data; the kernel cannot allow
them to exist if it no longer has a policy to protect them.

Before the kernel unloads a module, it executes a purging algorithm to deal with this problem. The
purging algorithm saves what it can of the data associated with the module, and destroys the rest.

4In addition to a DTEL policy specification, the kernel also reads the dt_member and the dt_role file at boot
time. The dt_member file introduces the notion of a role, which is a group of users with similar responsibilities. In
addition to loading the auditjm module, the administrators might need to add an auditor role to the dt_member
file, along with a list of all the users who are auditors. In this situation, they would also have to associate the audit.r
role with the audit-d domain by adding a mapping into the dt_role file. The DTE-aware login program uses the
information provided in the dt_member and dt_role files to determine the domains that a user may log in to.

July 22, 1997 13

The details of the algorithm are provided below:

1. First, the kernel terminates any process which is running in a domain defined by the module.
These processes cannot remain after the module is gone, because their domain would no
longer exist in the kernel's policy.

2. The kernel unmounts any file systems corresponding to a mount statement in the module.
When the module is removed, these file systems will no longer be legally mounted, so they
cannot remain.

3. The kernel regrades any files associated with types specified by regrade statements in the
module. Dynamic modules can use regrade statements to inform the kernel that files associ-
ated with certain of the module's types should have their type changed to a particular base
policy type when the module is unloaded. Once a file is associated with a base policy type,
it is under the protection of the base part of the policy, and can be allowed to outlive the
module. Dynamic modules are not required to provide regrade statements for their types.
The kernel deals with the types without regrade rules in the following step.

4. The kernel completes the purging algorithm by removing any files still associated with one of
the module's types from the file system. When the kernel removes a directory in this way, it
removes all of the directory's children, regardless of their type.

Once the purging algorithm is complete, the kernel unloads the module itself. The kernel accom-
plishes the purge and unload operation as one atomic unit. With the exception of the regraded
data, no traces of the module's processes or data remain.

2.2 Inter-module Dependency Restrictions

Modules may assume types and domains which are defined in other modules. As mentioned in
section 2.1.1, modules often assume domains in order to glue themselves into a kernel's existing
policy. Whenever one module assumes a type or domain from another module, the first module
becomes dependent on the second. Without the second, the first cannot exist in a kernel's policy. As
described in section 2.2.1, these dependency relationships are a source of complexity for the kernel.
The following sections describe how the phase two prototype limits the kinds of dependencies it
supports among modules in order to control this complexity (section 2.2.2), and discusses how these
restrictions impact the prototype's functionality (section 2.2.3).

July 22, 1997 14

2.2.1 Dependency Graphs

Conceptually, inter-module dependencies can be represented as graphs. The DTEL policy fragments
shown below are related by a dependency graph.

policy base_p;
type unix_t;

domain unix_d (/bin/csh), (crwxd->unix_t), (auto->reboot_d),

privauth, privload, privreboot, privswapon;

module modl_m;

assumes domain unix_d;
type project_t;

unix.d += (rxd->project_t);

module mod2_m;
assumes domain unix_d;
assumes type project_t;

domain projected = (/bin/csh),
(crwxd->project_t), (rwxd->unix_t);

unix_d += (exec->project_d);

The modljm module assumes the unixA domain defined in basejp, so it depends on basejp. Simi-
larly, the mod2-m module assumes unixA and project J, so it depends on both basejp and modljm.
Figure 4A shows a graph of their dependency relationships. It represents each module with a
rectangle, and each dependency relationship with an arrow.

(A) Module Dependency Graph (B) Cyclic Module Dependency

base_p

/
S f > \

\

moai_c 11 muiu_m

one m two m

Figure 4: Two Module Dependency Graphs

The dependency relationships in figure 4A's graph add complication to the process of dynamic
module loading and unloading. After basejp is loaded at boot time, the remaining two modules
are loadable only in a certain order: modljm first and mod2-m second. Since mod2jm assumes

July 22, 1997 15

the project J type from modl-m, it can only be loaded when projects already exists in the kernel's
policy. Similarly, the two modules could be unloaded only in the reverse order: first mod2-m
and then modl-m. Since this example contains only two dynamic modules, the complexity is
not overwhelming. With many dynamic modules, however, the ordering restrictions imposed by
the dependence relationships may become considerable. Administrators might find themselves
unable to unload a particular module which has outlived its usefulness because it defines types and
domains needed by other modules, for example. This might make it difficult to remove an old trust
relationship from a kernel's policy without rebooting.

Since figure 4A's graph contains no cycles, it is possible to find at least one ordering in which
the modules may be dynamically loaded and unloaded. As shown by the following two modules,
however, the DTEL syntax does not guarantee a lack of cycles.

module one_m;

assumes type two_t;

type one_t;
domain one_d = (rwx->two_t);

module two_m;

assumes type one_t;

type two_t;

domain two_d = (rwx->one_t);

Figure 4B shows a graph of these two modules' dependency relationships. Since the graph contains
a cycle, there is no ordering in which these modules can be loaded or unloaded. Since module
onejm assumes the existence of type twoJ, type twoJ, must exist in the kernel's policy at the time
module onejm is loaded. Similarly, module twojm depends on onejm for its definition of type oneJ.
In a situation involving both module onejm and two-m, an administrator would be unable to load
either one, since each depends on the other being loaded first.

2.2.2 Restrictions on Dependence

The prototype avoids the complexity described above by restricting the kinds of dependencies
which it allows among some modules. In order to accomplish this, the kernel divides its policy into
two parts: the base part and the dynamic part.5 The base part of the policy is made up of the
policy loaded at boot time, in the manner of the phase one prototype. This part of the policy is
permanent, and may not be removed using the dtunload command. Modules in the base policy
are free to depend on any other module in the base policy in any way they choose. Since the base
policy modules are all loaded at once (effectively at the same time) and are never unloaded, even
cyclic dependencies do not cause any difficulty.

5The division is real only at a high level of abstraction. In the low-level implementation the base and dynamic
parts are united in a single representation, for the sake of simplicity and efficiency.

July 22, 1997 16

The dynamic part of the policy is made up of the modules that administrators load after boot time -
the so-called "dynamic modules" or "dynamic policy modules." The contents of the dynamic part of
the policy are apt to change over time as administrators use the dtload and dtunload commands
to add and remove modules. The kernel allows these dynamic modules to depend only on modules
in the base policy. The kernel will refuse to load any dynamic module which depends on another
module in the dynamic part of the policy.

(A) Initial Kernel Security Policy (B) Modified Kernel Security Policy

Base Part
my_policy_p

ml_m N||F m2_m

Dynamic Part

Figure 5: A Conceptual View of a DTE Kernel's Security Policy Before (A)
and After (B) a Pair of Dynamic Modules are Loaded

Figure 5 shows two conceptual views of a kernel's security policy. Each view shows the modules
that make up the policy, and the dependencies between them. Figure 5A shows the kernel's initial
policy state immediately after booting. Its base policy contains three modules: my.policy^p, mljm,
and m2-m. Figure 5B shows the same policy with the addition of two dynamically-loaded modules:
dmljm and dm2-m. In accordance with the kernel's restrictions, the two dynamic modules depend
on various parts of the base policy, but not on each other.

2.2.3 Impact on Prototype Functionality

The dependency restrictions described above limit dynamic policy modules to dependence only
on other modules that will always be present in the kernel's policy. This arrangement avoids
the troublesome situations where dynamic modules must be loaded or unloaded in a particular
order. It also prevents the possibility of cyclic dependencies among dynamic modules. Since
dynamic modules are not allowed to depend on each other, and base policy modules cannot depend
on dynamic modules (because the dynamic modules are not loaded until after boot time), no

July 22, 1997 17

dependency cycles involving dynamic modules can arise.

Although this restriction makes the complexity introduced by dynamic modules manageable, it does
limit the kinds of useful modules the kernel will accept. There are situations in which administrators
might find it convenient to have dependencies among dynamic modules. Two dynamic modules
might depend on some types defined in a third, for example. The administrators might desire the
ability to leave the module with the types in the kernel's policy for a long period of time, while they
load and unload the other two modules frequently. With the phase two prototype, however, they
would either be forced to combine all three modules into one, or to put the types in the base part
of the policy. Fortunately, either of the solutions would still result in the same policy enforcement
behavior as the three original modules. Although it does decrease the ease with which policies can
be modularized, the kernel's dependency restriction does not decrease the body of policies that are
expressible.6

2.2.4 Indirect Module Dependencies

The dependency restrictions described in section 2.2.2 prevent dynamic modules from depending
on each other directly. However, through the use of base policy domain augmentation, it is possible
for dynamic modules to depend on each other indirectly. The following DTEL module fragments
illustrate this point:

policy ipolicy_p; /* base policy */
type unix_t;
component user_c = (/bin/csh), (crxd->unix_t);

module imodl.m; /* dynamic module */ module imod2_m; /* dynamic module */
assumes domain user_c; assumes domain user_c;
component user_c += (w->unix_t); domain foo_d = user_c;

Through the user-c base policy component, the dynamic policy module imodl-m grants the foo-d
domain in the dynamic policy module imod2-m write access to unixJ. Even though module imod2-m
does not assume any types or domains from module imodl-m, it depends on it indirectly for this
right.

Unlike direct dependencies, indirect dependencies do not place ordering limitations on the dynamic
module loading and unloading process. In the example above, administrators can load and unload

6The third phase of this project will investigate strategies for relaxing these restrictions on inter-module
dependencies.

July 22, 1997 18

modules imodl-m and imod2-m in any order, although the policy enforcement behavior described
by the foo.d domain is more restrictive without the presence of module imodl-m. As described
in section 2.3, the phase two prototype restricts the ways in which dynamic policy modules may
augment base policy domains. These restrictions can be specified to control or optionally eliminate
opportunities for indirect dependencies at the cost of some increase in policy complexity.

2.3 Module Behavior Restrictions

In addition to their capacity for augmenting existing base policy domains, dynamic policy modules
possess the ability to add new IP address attribute assignments, DTE systems, key definitions,
and key bindings to the kernel's security policy. Like augmentation, these abilities exist primarily
to allow dynamic modules to glue themselves into the kernel's existing policy by making sure the

policy includes all of the elements they need to do their job.

These abilities allow dynamic modules to do much more than glue themselves into a kernel's policy,
however. They also allow dynamic modules to change the relationships between base policy types
and domains. Consider the following base policy and dynamic module:

policy base_policy_p; module dynamic_m;
type oil_t, water_t; assumes type oil_t, water.t;
domain oil_d = (rwxcd->oil_t); assumes domain oil_d, water_d;
domain water_d = (rwxcd->water_t); domain oil_d += (rwxd->water_t);

domain water_d += (rwxd->oil_t);

In this example, the intent of the base policy shown in the base-policy specification is to keep data
of type oiLt and type water J separate. But once the module dynamicjm is loaded, the separation

created by the base policy is destroyed.

In some situations, this wide-ranging ability to modify the base part of a kernel's security policy
may be desirable. Administrators may wish to use dynamic modules to manage a kernel's policy
enforcement behavior by granting and revoking the rights of base policy domains. In other situa-
tions, administrators may wish to limit the kinds of statements dynamic modules may contain, in
order to protect the integrity of the base policy. For example, some administrators might wish to
use dynamic modules only to add policy governing new trust relationships. They might object to
modules which change the policy governing existing trust relationships, like dynamicm above.

The phase three prototype will support the notion of a "meta-policy" - a configurable policy which
governs how dynamic policy modules may modify the base policy. The kernel will read a description
of this meta-policy along with its base policy at boot time. Subsequently, the kernel will refuse to

July 22, 1997 19

load dynamic modules which would violate its meta-policy. The phase two prototype, however, does
not support this configurable meta-policy mechanism. Instead, it provides a single non-configurable
meta-policy which allows dynamic modules only the power they need to glue themselves into a
kernel's policy, and no more. The phase two meta-policy places restrictions on several of the DTEL
commands that can be used in dynamic modules, in order to ensure their good behavior. The
restrictions are summarized in the following list:

assign statements: Unlike base policy modules, the kernel does not allow dynamic policy modules
to contain the DTEL assign statement. This prevents them from changing the file system
type bindings specified by the base policy.

domain augmentation: Domain augmentation allows dynamic policy modules to add limited
kinds of subject and object rights to domains in the base policy. The kernel will allow a given
dynamic policy module to grant rights to any new domains and types which it defines itself,
but not to domains and types defined in the base policy or in other dynamic modules. This
helps prevent dynamic modules from radically altering the relationships between base policy
domains as described in the example above. The kernel further prohibits dynamic modules
from granting any subject rights other than exec or auto. Dynamic modules may use domain
augmentation only to grant subject and object rights; they cannot use it to add new entry
points or privileges to base policy domains.

key bindings: The kernel allows dynamic modules to specify key bindings only for new types
they define themselves. As described in section 3.2, key bindings are a new DTEL feature
which allows a kernel's policy to specify that data of a particular type should be encrypted
with a specified DES key. This restriction prevents dynamic modules from derailing network
applications running in base policy domains by unexpectedly encrypting their data streams.

July 22, 1997 20

3 Encryption

In order to safely extend the security perimeter between two firewalls, network traffic between
participating hosts must be protected. The traffic must be safe from modification, and in some
cases safe from disclosure. Encryption and integrity at the IP-level provide this protection to the
phase two DTE firewall. For this capability, we choose IPSec because it is becoming a standard
among a variety of platforms. Also, IPSec is precisely defined in RFCs 1825[1], 1826[2], 1827[3],
1828[11]. Other protocols exist, but do not allow for inter-operability or are not well defined.

3.1 Description of IPSec

IPSec is an Internet Engineering Task Force (IETF) specification for providing Internet Protocol
(IP) authentication, integrity, and confidentiality. It is an intermediate step in the conversion
between IPv4, the current standard, and IPv6. IPv6 will have the security mechanisms built into
the protocol, so extra measures will not be necessary; the IPSec protocol provides IPv6 protection
mechanisms to IPv4 packets.

The IPSec protocol specifies two mechanisms (transforms) to secure network transmissions: the
Authentication Header (AH) to ensure data authenticity,7 and the Encapsulating Security Payload
(ESP) to provide data confidentiality.8 Both AH and ESP provide data integrity. AH and ESP are
described in RFCs 1826 and 1827, respectively. The IPSec protocol is independent of the types of
AH and ESP transforms implemented.

When forming packets for transmission, IPv4 packets are encrypted and placed into the payload
section of one or more IPSec packets. IPSec packets begin with a standard IPv4 header and a special
ESP header which contains some of the information necessary to decrypt the payload. Figure 6
illustrates how IPv4 packets are converted into IPSec packets.

3.2 Description of DTE/IPSec

The NRL IPv6/IPSec Software Distribution is a reference implementation of IPv6 and IPSec based
on the 4.4BSD-Lite networking software. In this implementation, ESP is provided through the US
Data Encryption Standard in Cipher Block Chaining (DES-CBC) mode. With NRL's reference

7In this phase of the DTE firewalls project, data authentication is assumed. In the final phase of the project,
authentication will be provided by the Domain Type Authority, but it will not be provided by IPSec's AH mechanism.
For this reason, this section will only discuss the ESP aspect of IPSec.

8The DES algorithm used for ESP in NRL's Alpha 4 release of IPv6/IPsec was written by Phil Karn, and is the
most efficient DES algorithm for the i386 architecture.

July 22, 1997 21

Original
Packet

IPv4
Header Payload

IPSec
Packet

IPv4
Header

ESP
Header

IPv4
Header Payload

Non-encrypted

llllllii Encrypted

Figure 6: Converting an IPv4 Packet to an IPSec Packet

implementation of IPv6/IPSec as a starting point, we separated the IPSec from the IPv6 code and
integrated it into the DTE kernel. The DTE prototype required two significant modifications for
IPSec.

1. First, encryption key management was added to the kernel's DTEL library. The DTEL
library was modified to associate ESP key information with DTE types. An association
may be created that binds a type to processing for ESP. However, the default action is that
types do not require ESP processing. These associations and the key information are stored
in the DTE policy, and kernel-accessible library routines provide the ability to retrieve key
information and bind key information to types. Also, DTEL has been extended to provide a
language statement that associates IPSec key information with types.

2. Second, IPSec processing was added to the networking code. Immediately prior to transmis-
sion, packets are passed to the IPSec subsystem for ESP processing. If IPSec key information
has been associated with a particular DTE type, any network packets sent with that type are
automatically passed to the ESP portion of the IPSec code. After the IPSec processing has
been completed, the packet is then transmitted to the network hardware. When an IPSec
packet is received, it is decrypted and checked for integrity as needed, and then passed to the
appropriate higher-level protocol code.

July 22, 1997 22

Figure 7 illustrates the basic DTE/IPSec algorithm for outbound IP packets:

1. A high-layer protocol (TCP or UDP in Figure 7 on the left system) requests that an IP
packet carrying a data payload be sent. The IP layer builds the packet; the packet contains
the data payload, is prefixed by the standard IP header, and contains the packet's DTE type
identifier in the IP option space of the IP header. When the packet is complete and ready
for transmission, the IP layer passes the packet to the DTE/IPSec portion of the kernel for
processing.

2. The DTE/IPSec code compares the packet's DTE type to the list of types requiring ESP.
(The packet's type is taken from it's IP option space and the list of types is found in the
DTE policy data.) If ESP is specified for the type, the ESP processing code retrieves the
type's ESP key from the DTE policy data and uses the DES-CBC transform to encrypt the
IP packet.

3. The ESP processing code builds a new, unencrypted IP header for the actual packet that will
be sent. This header has appended a new ESP Header and then the encrypted IP packet
(see Figure 6). The ESP Header consists of two unencrypted 32-bit fields: the first field, the
Security Parameters Index (SPI), contains the hashed type value of the packet and the second
field holds the Initialization Vector (IV) for the DES-CBC transform.

4. The IP packet is then transmitted across the physical network as normal.

Figure 7 illustrates the basic DTE/IPSec algorithm for inbound IP packets:

1. An incoming packet is received (in Figure 7, at the lowest layer on the right side). It is queued
by the hardware device driver.

2. The packet is taken off the queue, header validation is performed, and an attempt is made to
defragment the packet. If defragmentation succeeds, the protocol number is used as an index
into the protocol dispatch table and the packet is passed up the protocol stack. In the case
of a properly-formed IPSec packet, DTE/IPSec kernel processing will result in a reversal of
output processing.

3. If the ESP processing code finds that the packet is an ESP packet, then the SPI contains
the hashed type value of the packet. The SPI is used to retrieve the DES-CBC key from the
DTE policy data. This key is used to decrypt the encrypted portion of the packet.

July 22, 1997 23

LIBDTKLand

OTE potk> data

LIBDTEL and

DTE iH»lk> data

Receiver

TCP UDP

IP

DTE/IPSec

Kncapsulatinj; Sccurilv
P:i\ln»fl|jiiirr<.<iinj>

O

W

►0

s
<3

A

Physical Network

Figure 7: DTE IPSec in the Protocol Stack

4. The DTE/IPSec code then compares several of the fields in the inner and outer IP headers for
consistency. These fields are the IP version, the source address, and the destination address.
If an inconsistency is found, or if no key exists for the packet's type, the packet is considered
invalid. When an invalid packet is received, an error is logged and the packet is discarded.

5. When the DTE/IPSec processing is complete, DTE options in the IP header are extracted.
The packet's type stored in the packet's DTE options will indicate if the packet is of a type
that requires encryption. If this is true but no ESP headers were included, then the packet
is considered invalid, an error is logged and the packet is discarded.

6. If the packet is not found to be invalid, it is passed up the protocol stack to the IP code.

July 22, 1997 24

3.3 IPSec Key Management in DTE

General IPSec terminology defines a security association as a one-way abstraction of security in-
formation between two endpoints. A security association consists of the type (ESP), SPI, source

address, destination address, transform (e.g. MD5, DES-CBC), key, and IV. Since DTE commonly
speaks of security attributes, we will refer to a key association rather than a security association in
the context of the DTE prototype. As mentioned in section 3.2, the cryptographic protection of
network streams is bound to DTE types. A single type may require ESP processing, or be allowed
clear-text transmission. Thus, a type may have zero or one key associations. These associations
may be unique, or multiple types may share the same key association. Key associations may be
contained in a dynamic module, though only for types introduced in that module. A dynamic

module may not alter the key association of a base policy type.

Information in a DTE key association consists of the class (ESP), key name, key, IV,9 and a list of
types to which the association is bound. The general DTEL format of a DTE key association is:

key <class> <key-name> = (<key> [IV])->typel, type2, ... ;

As currently implemented, several fields of the original IPSec security association are not specified
in the DTE key association. The source address and destination address of the IPSec security
association are not necessary, since keys are bound to types. Additionally, the SPI need not be
specified in the DTE key association since its value is given by the hashed type. Finally, the
DTE/IPSec implementation exclusively uses the DES-CBC transform for ESP, so the transform

need not be specified.

9Initialization Vectors are optional in key associations. Their use depends on the requirements of the transform.

July 22, 1997 25

4 Phase Two Scenario (Expanded)

For phase two, we reiterate and slightly expand the phase one measurement and evaluation sce-
nario. This consisted of two fictitious companies, Strider Sprockets and Donald Cogs, that produce
competing products, sprockets and cogs. Each organization utilizes a DTE-enhanced network,
consisting of a DTE firewall and DTE hosts behind the firewall, to safeguard their corporate infor-
mation. For a limited time, the two companies wish to develop a trust relationship to produce the
Gizmo, a combination of sprocket and cog technology. The pre-alliance DTE base policies of the
Strider and Donalds corporations classify user data into public and private portions. The public
data, for such things as advertising of product information, is accessible to everyone, but the pri-
vate data, pertaining to sprockets and cogs information, is accessible only to Strider and Donalds
employees, respectively. Prior to the alliance, Strider and Donalds view each other as any other
untrusted entity and can only access and exchange the unencrypted public data type available via
the HTTP and MAIL services.

The Strider/Donalds alliance wish to employ a full suite of advanced applications and protocols to
make their work efficient (e.g. the most recent web browsers, MAIL, FTP, RLOGIN, TELNET,
and file sharing via NFS). The alliance must protect their joint information from others designing
products to compete with the Gizmo and still protect trade secrets relating to sprockets and cogs
from each other. To accomplish this task, the alliance wishes to form an enterprise zone consisting
of the Strider and Donalds DTE firewalls and one DTE host behind each firewall. After formulating
shared data types, roles and services for the alliance, the DTE policies of the alliance machines
require modification to form the enterprise zone. DTE policy modification can be accomplished
through the use of dynamic modules.

Dynamic modules can be as simple or as complex as necessary to attain their end goal, in this
case to define an enterprise zone expressing a trust relationship. Properly developed dynamic
modules also maintain the intent of DTE base policies so that loading of dynamic modules does
not introduce unintended data disclosure or corruption. Since dynamic modules can be loaded
through the dtload command, there is no need to interrupt system services by modifying DTE base
policies and rebooting machines for our scenario's enterprise zone to take effect. Once Strider and
Donalds have loaded the dynamic modules, each organization can access and exchange alliance data
without release of private data types defined in the base policies. Data encryption keys, specified in
dynamic modules, assure the confidentiality and integrity of Strider/Donalds data exchanged over
unprotected networks. When the trust relationship is dissolved, the dtunload command unloads
the dynamic modules thus returning the DTE policies to their pre-alliance specification without
the need for base policy modification or system reboots.

Section 4.1 provides an overview of the Strider and Donalds base policies. This is followed by
section 4.2, which describes the dynamic policy modules for the Gizmo enterprise zone.

July 22, 1997 26

4.1 Base Modules

The DTE firewall and host base policies of the Strider corporation prior to the alliance can be
found in Appendix A. For simplicity, we assume the Donalds' base policies differ from Strider's

base policies in only one type and domain name: Strider has domain strid-d and type stridJ, while
Donalds has corresponding domain don.d and type donJ. These domains define the primary work
role of each organization. The remaining policies' types, domains, and access rights are identical
and are not presented.10 Although the development of the Domain and Type Authority (DTA)
in phase three will further address non-homogeneous policies, the current prototype allows base
policies of cooperative DTE machines to be non-homogeneous as long as the domain and type
names exchanged between machines are consistent for access mediation. Thus, for example, the
domains necessary for NFS communication, (the domains that nfsd, nfsiod, and NFS users run
in), must be identically named on DTE client and DTE server machines and the machines can only
exchange identically named data types as specified by the client and server DTE policies. In our
scenario, the Donalds' corporation DTE policy does not understand Strider's strid.d domain and
would deny any access attempts from that domain via NFS. However, the strid-d domain can still
be present in the Strider policies for local NFS communication or via the DTE firewall for NFS
exchange with a remote Strider site without hindering alliance communication.

The organization's base policies of the phase two scenario are, basically, subsets of the policies
defined in the phase one Measurement and Evaluation report. Thus, rather than reiterate the
detailed discussion of the base policies presented in the phase one report, we discuss the differences
evident from a line-by-line comparison of the phase one and phase two base policies. The differences
can be placed in two categories: phase two prototype functionality changes and revisions made to
the phase one policy resulting from further validation testing after document publication.

The policy modifications due to evolving prototype functionality are straight-forward. First, be-
cause of dynamic module capabilities the phase two Strider firewall and host policies do not contain
any references to the Cogs alliance: that is, the gizmo A domain, the gizmo J, type and the subject-
Xo-gizmojd subject as well as the subject-to-gizmo J object accesses contained in their phase one
counterparts. Additionally, the phase one mandatory tcp.d domain and tcpJ, type used to label
protocol-specific data are no longer necessary and have been removed: all protocol-specific gener-
ated data is now internally typed and mediated by the DTE kernel. Finally, the phase two Strider
policies reflect the use of associated domain privileges. The phase one prototype contained the
setauth privilege giving a domain the authority to modify the DTE User ID (DUD). In phase two,
this privilege has been renamed to privauth and six new privileges have been added to specify
domains permitted to perform special DTE or Unix operations^]1 x

10 Some additional differences, such as mount points, machine names and IP address information would also likely
be present. For this discussion, though, these differences are irrelevant.

"Privileges are encapsulated by domains; the ability of a program to use a privilege depends on the program's

July 22, 1997 27

Two corrections to the published phase one host policy have also been made. First, /dev/null
should have been typed termJ, rather than tmp.t. The second correction deals with modifications
for NFS use. The nfsJ type was introduced replacing unixJ, type for NFS message exchange. The
use of unixJ required NFS user domains, such as anon-d, to have write access to the unixJ system
type, which includes system binaries thereby granting unnecessary access. Additionally, the domain
fw-nfs-d must have srcd access to the nfsd.d and nfsio.d domains for forwarding of NFS request
and response messages.

4.2 Dynamic Module Specification

After announcing their joint venture, the Strider and Donalds staffs define the personnel working
on the project along with a high level specification for the roles, data types, data accesses, and
network services necessary to conduct their alliance. The primary roles are defined to be project
leader, accounting, and development engineer. The development effort will be conducted via NFS
with each corporation exporting a single file system, /usr/home/gizmo, of project data. The
following specifications are agreed on for Strider/Donalds interaction:

Roles
The Strider/Donalds Gizmo alliance will consist of the project leader (gizmojproj), accounting
(gizmo-acct), and engineering (gizmo.eng) roles. The roles allow authorized personnel in each
organization to log into domains granting appropriate access to shared data (see below).

Data Types
The Strider/Donalds Gizmo alliance shared data will be labeled with types gizmo-engJ,
gizmo -rates _£, and gizmo-budget J,.

Data Accesses
The project leader role will have the responsibility of creating budget projections. The project
leader role will also be able to view, though not modify, all other project data. The accounting
role will have the responsibility of creating and adjusting labor rates. The accounting role
will be able to view, though not modify, the budget projections, but will not have any access
to engineering data. The engineering role will have full access to engineering data, but no
access to any other project data.

Data Encryption
All project data shall be encrypted when it is sent over the network between firewall-protected
enclaves.

(DTEL expressed) ability to enter a privilege-carrying domain.

July 22, 1997 28

Network Services
The project leader role will utilize the MAIL, RLOGIN, TELNET, HTTP, and NFS services.
The accounting role will utilize the MAIL, HTTP, and NFS services. The engineering role
will utilize the MAIL, HTTP, and NFS services.

Once the basic agreement for data sharing is formulated, the DTE administrator of each organiza-
tion creates the dynamic policy modules permitting necessary data to be securely shared through
common services and prohibiting unauthorized data disclosure.12 As stated in the phase one re-
port, a well-developed base policy minimizes the burden associated with this task. Additionally,
the DTE dti command can be used as a helpful tool in dynamic policy development. The full
firewall and host dynamic policies are presented in Appendix B. Complete descriptions of DTE
firewall and host processing pertaining to the DTE policy can be found in the phase one report[4].

12 Some additional pieces of information, such as the name and IP addresses of the other corporation's firewall and
user identification information, also are needed for system configuration; see appendix B for more detail.

July 22, 1997 29

5 Measurement and Evaluation

The second phase of the DTE firewalls project took the phase one prototype, which was capable
of supporting limited trust relationships with entities outside of its secure enclave, and extended
it to provide the infrastructure necessary to support enterprise zones. This infrastructure makes
the phase two prototype capable of providing secure distributed computing environments for col-
laborative relationships between organizations. It also provides the administrative tools required
to dynamically create and destroy these environments in a controlled fashion. Using the phase two
prototype, collaborating organizations may share a well-defined subset of their resources with each
other through the enterprise zone abstraction.

This report measures the success of our prototype using the same four criteria used in the phase
one report: safety, functionality, performance, and compatibility. The following list defines each
criterion for network services:

safety: Safety refers to the degree of protection from attack the prototype provides to hosts, host
applications, firewalls, and network applications, and the extent to which it protects important
data from theft or corruption.

performance: This report is concerned with the difference in network throughput performance
between groups of conventional (non-DTE) baseline systems and groups which contain DTE
systems.

functionality: Functionality refers to the degree to which existing functionality has been preserved
and any new functionality has been added. It also notes any new user procedures which are
required for DTE firewalls.

compatibility: The compatibility issue examines the degree to which DTE firewalls inter-operate
with non-DTE hosts and firewalls, and notes any required changes to system or application
software.

We apply the same criteria to the phase two prototype's new dynamic modularity and encryption
features, as appropriate. Section 5.1 summarizes the evaluations of the network services supported
in the first phase of the project. These services include remote login (rlogin), TELNET, FTP,
SMTP, NFS, and HTTP. Section 5.2 evaluates the phase two prototype's support for dynamic
policy modules, and section 5.3 evaluates the prototype's new encryption features.

July 22, 1997 30

5.1 Network Services

The phase one report provided a detailed evaluation of the remote login, TELNET, FTP, SMTP,
NFS, and HTTP services. With the exception of performance, the phase two prototype's new
dynamic modularity and encryption features do not affect these evaluations. The following sections
summarize the phase one report's evaluations for each network service[6]. The performance section
(section 5.1.4) includes updated statistics and text which reflect the optimization of DTE networking
code implemented during phase two. The original evaluations can be found in the Phase One
Measurement and Evaluation Report[4].

5.1.1 Safety

The safety provided by DTE enhancements to firewalls can be grouped into two main categories:
additional strength found in the firewall and defense in depth provided by the security policy coor-
dination facilities of a DTE firewall. The additional strength in the firewall results from confining
each proxy to a domain, in which it has access only to the files needed to perform its task. There-
fore, for example, if the FTP proxy is compromised, it cannot alter or view system files. Although
user data could be relabeled by a malicious proxy, this relabeling is restricted to the types the
proxy can access: by restricting the types available to a proxy the DTE policy can specify differing
levels of trust for different proxies. To promote defense in depth, DTE firewalls propagate (or
associate) the DTE security attributes between clients and servers, allowing DTE mechanisms on
the endpoints to enforce consistent security rules for communicating programs. The two cases of
greatest interest are when the server is running DTE and when the client is running DTE.

For all services except NFS, an incoming connection causes the DTE server to spawn the server
process into the domain associated with the client by the DTE firewall. Because the server process
is confined by the client's domain, the security of the server host does not rely on the robustness or
security of the server process and the client's access remains unchanged even though using a network
service. With the additional security added by DTE mediation, the server is confined sufficiently to
be located inside the firewall security perimeter, removing the sacrificial lamb aspect of conventional
servers. DTE also provides control for NFS-driven file operations on the server based on the client's
domain.13 Untrustworthy clients can be granted limited access to NFS hierarchies while preserving
full access for more trustworthy clients.

For some services (e.g., HTTP), the server requires access to certain system files (e.g., the password
file) to function normally. Because of these requirements, DTE cannot prevent the export of all

13 DTE security attributes carried in UDP datagrams provide system-to-system authentication even for connec-
tionless services; because each packet contains reliable DTE security attributes, connectionless services can be
authenticated.

July 22, 1997 31

system-sensitive data. However, it can prevent the overwriting of this data and the export of
sensitive corporate data. In general, the client's domain prevents the client from using the server to
corrupt data or system files or to access sensitive information. Additionally, the DTE policy on the
server can prevent unintentional access to files accidentally copied into exported NFS hierarchies
(by controlling access to the file types.) The client's domain labels all data created for the client
by the server (e.g., mail messages;) subsequent access to the data (which may be sensitive or of low
integrity) on the server system therefore is controlled.

DTE firewalls increase safety for clients primarily by forcing security agreement between client and
server domains, and by preventing undesired "crosstalk" between clients in different domains. For
non-DTE client systems, a DTE firewall associates a single DTE domain with an entire system.
This domain establishes the security context for a system and therefore establishes the security
context of the servers available to the client (but does not restrict which protocols can be used.)
For non-DTE systems, this forces a choice for each system: will it process data of importance to
the organization, or will it process data from unknown sources (e.g., Web sites, FTP archives?)
Although a DTE firewall can be configured to allow both, doing so entrusts the security of the
organization to the client's ability to resist possible attacks from outside.

In the case of DTE clients, the client system provides mechanisms strong enough to maintain
separation, and therefore offers users greater flexibility with respect to security, and also with
respect to what services can safely be consumed from outside. Using a DTE client, a user can
choose different roles for different activities. For example, a user wishing to exchange electronic
mail or surf unimpeded across the Internet can start a session in a domain that has access to the
"unknown_type" data from the Internet but not to important corporate data or system-critical
files. Browsers, Postscript viewers, and other programs that might be tricked by external entities
are consequently unable to steal from or otherwise damage the organization. Similarly, a user can
start a session that grants access to corporate data but not to the outside world. Typically, a
user would employ a window system to run several environments simultaneously, and would use a
DTE-constrained regrade facility to move data between the environments in a controlled manner.
Due to DTE labeling of new data files, undesirable crosstalk between clients via intermediary files
is also controlled. This feature can be used to prevent importation of executable programs, for
example: a DTE policy can ensure that programs imported by one domain will not be executable
by another.

5.1.2 Functionality

For importing services, functionality is rarely affected. In services such as rlogin and TELNET,
when the client is a DTE system, user authentication can be automatically supplied by the client
DTE system and the proxy can accept and use this authentication instead of requiring additional

July 22, 1997 32

authentication. Under some circumstances, this can increase usability. The DTE uids, however,
must be set up in the firewall configuration; this adds a small amount of administrative overhead.
Services such as HTTP and FTP can be made more widely available because the risk of malicious
programs (e.g., applets) has been reduced via DTE. NFS requires slightly more administrative
overhead, but becomes safely available - something not possible before. Outgoing mail service has
the same functionality, unless the user attempts to send out a file inaccessible from the mailer's
domain.

A greater increase in functionality can be found in the exporting of services. With the additional
security of running a server in a domain restricted according to trust level of the client, the server
no longer needs to be located outside the firewall. Instead it can be on a system behind the firewall,
or even on the firewall itself. Furthermore, with the server starting in the domain of the client,
it is feasible to grant access to different classes of information based on that, domain - something
very useful for HTTP and FTP. In this way, for example, an anonymous FTP server could regulate
access to files without resorting to multiple servers or hidden files. Also, a single HTTP server could
provide sensitive data to users in multiple domains without fear of having the data compromised
or altered.

5.1.3 Compatibility

Each service can interoperate either with DTE or non-DTE systems; furthermore, the application-
level proxies revert to standard FWTK behavior when run on a non-DTE kernel. The use of
IP options to carry DTE information removes the need for changing any of the protocols. With
the exception of the NFS server, which is kernel-resident in UNIX14, few of the client or server
applications have been changed to function with DTE firewalls: mail final delivery agents were
modified to be cognizant of the different types associated with a user's mailboxes; the rlogin server
was modified to take advantage of DTE authentication mechanisms.

Some of the services running under DTE require changes in the administrative configuration. For
example, external NFS clients must explicitly name the firewall host as the server whose file systems
they wish to mount, since they cannot know the name of the server behind the firewall.15 As another
example, the DTE-protected uids must be specified on the firewall for use with non-DTE systems.

14UNIX is a trademark of the X/OPEN companies Ltd.
15 Note, however, that the firewall does not itself run the NFS server.

July 22, 1997 33

5.1.4 Performance

Initial data throughput performance tests included in the phase one measurement and evaluation
report showed moderate DTE performance overheads for the remote login and TELNET services
when used with DTE. For the NFS, HTTP, and FTP services, they showed a significant reduction
in performance. This reduction was investigated and several DTE network performance optimiza-
tions were found. The optimizations consisted of modifications to DTE diagnostic logging in the
low level IP output processing routine, and, more importantly, a modification to reduce the frag-
mentation of network packets caused by adding DTE options to IP header information. Although
we assume more optimizations can be found to enhance DTE network performance, informal test
results conducted using netperf, a public domain network performance benchmark,16 showed these
implemented optimizations considerably improved DTE network performance. As a result, the
phase one performance tests were re-implemented shortly after the release of the phase one report,
and the improved performance statistics were published in a revised report[5].

To re-evaluate the performance of DTE and DTE Firewalls, we constructed a testbed consisting
of three Pentium17 166MHz machines on an isolated Ethernet running BSD/OS 2.0 and version
"straw_19+" of the DTE prototype system.18 We ran each test on a number of configurations where
configuration is a triple (client, firewall, server) in which "y" indicates a system running DTE and
"n" indicates a host not running DTE (so (n,y,n) is the configuration where only the firewall is
running DTE). Performance of mail was not measured since it is not interactive.

For rlogin, TELNET, and FTP, we used an Expect script to repeatedly perform the following steps.

1. First, invoke the client application, specifying the firewall as the destination.

2. Next, authenticate the user on the firewall.19

3. Then, connect to the server, again authenticating the user.

4. Transfer a variable amount of data from the server through the firewall to the client, ranging
from 0 bytes transferred to 5 MB (except FTP, for which we tested 32 MB transfers).

5. Finally, log off the server, also terminating the connection with the firewall.

16 Netperf is copyrighted by the Hewlett-Packard company.
17Pentium is a trademark of the Intel corporation.
18This is the 19th internal version of the BSD/OS-based DTE prototype evaluation with some performance en-

hancements incorporated.
19When coming from a DTE client, rlogin and TELNET authentication is performed automatically, using the

DTE-protected uid.

July 22, 1997 34

Performance numbers were calculated by averaging results from 20 iterations of each test.

For HTTP, we used ZeusBench,20 a standard benchmark. ZeusBench connected to the server via
the HTTP gateway, retrieved a specified web page, and closed the connection; the gateway required
no authentication. We varied the concurrency, the document length, and the number of requests
(1000 requests for IK documents, and, to save time, 32 requests for 50K documents).

Data
Transferred

Baseline Percentage Change (%)
Protocol (n,n,n) (n,y,n) (n,y,y) (y,y,n) (y.y,y)

rlogin
OK 1.98 0 0 -15 -10

200K 3.43 6 8 -16 -23
500K 5.33 <1 <1 -14 -16
5MB 32.21 <1 <1 -2 -2

TELNET
OK 6.79 <1 <1 -15 -12

200K 7.79 <1 2 -10 -10
500K 9.89 1 1 -9 -7
5MB 41.36 <1 1 -2 -1

FTP

OK 1.98 9 13 6 11
200K 3.98 4 6 4 5
500K 4.59 3 4 3 4
5MB 14.23 3 6 <1 3

32MB 70.33 2 2 -1 <1

HTTP
Concurrency

Level 4
IK 355.81 8 13 12 15

50K 64.71 71 89 92 94
Concurrency

Level 8
IK 199.20 22 24 26 25

50K 60.23 75 94 97 114

Table 1: Raw Performance in Seconds and DTE Overheads

As shown in table 1, DTE overheads for rlogin, TELNET, and FTP are modest, with a maximal
impact of 13% in the worst case. With additional performance optimization, these could probably
be reduced. As is shown in the table, performance actually increases for rlogin and TELNET when
the client is running DTE. This is because the DTE client passes a DTE uid which the firewall can
accept instead of performing costly authentication. This performance increase does not manifest
for FTP because the FTP daemon has its own (always invoked) built-in authentication which we
did not disable.

"ZeusBench version 1.0 is copyright Zeus Technology Limited 1996.

July 22, 1997 35

Unlike rlogin, FTP, and TELNET, the HTTP service is approximately 50% slower in the worst
case. After analysis, we believe this performance decline for HTTP is somewhat artificial, resulting
from the low-performance implementation of the HTTP application gateway in the FWTK, which
does a separate readQ and write() system call for each byte transfered. This overstates DTE system
call overheads because, in this test, the system spends most of its time dispatching system calls that
each do very little work but incur the full burden of access control checking. More recent application
gateways, such as Gauntlet's,21 perform more efficient I/O; we expect that DTE performance for
those gateways should approximate the DTE performance for rlogin, TELNET, and FTP.

For NFS, we used Iozone and NFSstones, two widely-used NFS benchmark packages. The Iozone
package tests sequential file I/O by writing a 64 MB sequential file in 8,192 byte chunks, then
rewinds it, and reads it back (i.e., it measures the number of bytes per second that a system can
read or write to a file). The size of the file was big enough to prevent the cache from dominating
the results. NFSstones creates and deletes many directories, then does a variety of file accesses,
including writes, sequential reads, and non-sequential reads. Using these results in a formula, it
generates a single numeric indicator of relative NFS performance.

Baseline Percentage Change (%)
(n,n,n) (n,y,n) (n,y,y)

Iozone Bytes/Second Written 107,372.50 4 20
Bytes/Second Read 409,430.50 28 38

NFSstones NFSstones/Seconds 69.83 18 38

Table 2: NFS Test Results

As shown by the results in figure 2, performance of writes under NFS is moderately affected by the
addition of DTE to the firewall; adding DTE to the server produces a higher impact on performance,
with a 20% performance hit. Reads under NFS, however, dominate NFS performance, with a
slowdown of 38% when both the firewall and the server are DTE hosts. However, neither the NFS
application-level gateway nor the DTE-enhanced NFS server is optimized. Two possible locations
for performance degradation in the NFS server are the double mediation necessary because of the
primary/auxiliary domain combination and the manipulation of additional file handles needed for
DTE mediation in NFS-mounted files.

21 Gauntlet is a registered trademark of Trusted Information Systems, Inc.

July 22, 1997 36

5.2 Dynamic Policy Modules

This section applies the four evaluation criteria: functionality, safety, performance, and compati-
bility to the phase two prototype's support for dynamic policy modules. This support is described
in section 2.

5.2.1 Functionality

The main contribution of dynamic policy module support to the phase two prototype is increased
functionality. As described in section 2.1.2, dynamic policy modules provide administrators with an
organized framework for managing policy change. Administrators can use dynamic policy modules
to specify the policy governing new activities and trust relationships. They may add policy support
for a new activity or trust relationship to a DTE kernel by loading the appropriate module. Simi-
larly, they can remove the support by unloading the module. Administrators may load and unload
modules as the kernel runs. The ability to dynamically reconfigure a kernel's policy as it runs allows
administrators to add and remove policy support for trust relationships without requiring system
down-time and the resulting disruption of service availability. This method of policy configuration
is superior to the phase one method, which involved modifying a kernel's base policy description
and then rebooting the kernel.

5.2.2 Safety

Dynamic policy module support increases the safety provided by the phase two prototype by making
it easier for administrators to respond to changes in their organization's security policy. By loading
and unloading modules, administrators can construct new trust relationships or terminate old
ones as the kernel runs, without disrupting the policy governing existing trust relationships. The
prototype's support for dynamic policy modules also includes safeguards to prevent dynamic policy
modules from reducing the safety provided by the prototype. The prototype grants the ability
to load and unload dynamic policy modules only to users with UNIX root privileges operating in
domains which have the DTE privload privilege. In addition, the restrictions described in section
2.3 provide support for protecting base policy integrity from dynamic module misbehavior.

5.2.3 Performance

We anticipate that dynamic module loads and unloads will be relatively infrequent events. Still,
a reasonable response time for these operations is a desirable goal. Each dynamic policy module
load or unload modifies the DTE policy resident in kernel memory. Test results show that the

July 22, 1997 37

integration or deletion of a dynamic policy module's contents with a DTE kernel's running policy
does not take significant time to process.

For our experiments, the dynamic policy modules used included a nulLm module, consisting solely
of the module's name, and modules fivejm, ten.ni, and twenty.five.m, consisting of five, ten, and
twenty five domains and types, respectively. The nulLm module was chosen to give a base time
for comparison with other modules. Each of the other three modules' domain definitions included
five entry points, access to five types, and exec access to five domains. Each non-null module
also assumed a base type and a base domain and augmented the base domain with access to five
types and exec access to five domains. The dynamic policy modules used in the testbed's firewalls
(appendix B) are similar in size to the twentyjivejm module; the other testbed modules are smaller.

The experiment consisted of two trials. The first trial was conducted on a host which was enforcing
the "minimal" base policy shown in appendix C. The second trial was conducted on a host which
was enforcing the pre-alliance Strider host policy given in appendix A.2. The minimal policy only
defined one domain and one type while the Strider host DTE policy included twenty-two domains
and ten types. During both trials, each of the four test dynamic policy modules were subjected to
one thousand timed load/unload cycles.

Table 3 gives the average number of seconds required to load and unload each dynamic policy
module during both trials.22 The tests were performed using a csh script (with standard scheduling
priority) on a Pentium 100MHz/32MB machine. The dynamic policy module loading and unloading
mechanisms have not been optimized for performance.

Dynamic Module

Base Policy
minimal Strider host

nulLm
fivejm

tenjm
twenty-fivejm

.0433

.0957

.1506

.3592

.0501

.1054

.1639

.3841

Table 3: Average Time to Load and Unload a Single Module in Seconds.

22The results reflect the time for modification of the DTE policy resident in kernel memory only. If processes were
running in the domains defined by the unloaded module, or if files existed which were associated with the module's
types, additional processing time would be required for the kernel to kill the processes and regrade or delete the files.

July 22, 1997 38

5.2.4 Compatibility

Since the phase two prototype's dynamic policy module support does not modify the protocols
it uses to interact with other systems, its impact on compatibility is minimal. It does add a
number of new system features and behaviors, however. The phase two prototype provides system
administrators with two new utility programs, dtload and dtunload, for dynamic policy module
management. As described in section 2.1.3, the kernel will execute a purging algorithm whenever
it unloads a module. This algorithm may cause the kernel to kill processes and delete files which

were subject to the policy described by the module.

Dynamic policy modules themselves are written in the same DTEL policy specification language
as the phase one base policy description. Although some statements which are legal in base policy
specifications are not legal in dynamic module specifications, it is possible to convert most base

policy modules to dynamic policy modules without wholesale revision.

5.3 Encryption

This section applies the four evaluation criteria: safety, functionality, performance, and compati-
bility to the phase two prototype's new IP-level encryption features. These features are described

in section 3.

5.3.1 Safety

The phase two prototype's new IP-level encryption features increase the safety it provides to network
applications. As described in section 3, the phase two prototype cryptographically protects the
confidentiality and integrity of data traveling between DTE firewall-protected enclaves over public
networks. The quality of this protection depends upon the strength of the cryptographic algorithm
and the strength and secrecy of the keys used[10]. (Currently, the phase two prototype uses the
DES algorithm in CBC mode with 56-bit keys.) This data protection adds to the safety the phase
two prototype provides to all of its network services, and removes the need for the phase one

assumption of secure communications.

5.3.2 Functionality

The new IP-level cryptographic protection also adds to the functionality of the phase two prototype
by making support for enterprise zones possible. Without its facility for IP-level encryption, the

July 22, 1997 39

phase two prototype would be unable to securely link the distributed parts of an enterprise zone
across public networks.

5.3.3 Performance

The phase two prototype's IP-level encryption support reduces the throughput performance of
network services. Table 4 shows the results of five TCP/IP throughput performance tests designed
to compare the phase two prototype's performance to the performance of other kernels. The results
are graphed in figure 8. Each test involved a pair of kernels, running on identical 100MHz/32MB
Pentium machines, communicating over an isolated network. The actual kernels used in each test
were as follows:

BSD to BSD (non-encrypted): The first test measured the throughput between two BSD 2.1
kernels. The results of this test provided a baseline against which the results of the other test
could be compared.

BSD IPSec to BSD IPSec (non-encrypted): The second test measured the throughput be-
tween two modified BSD 2.1 kernels which incorporated NRL's IPv6/IPSec code. During this
test, the IPSec encryption features were not used.

DTE to DTE (non-encrypted): The third test measured the throughput between two phase
two DTE kernels. During this test, the network traffic between the two kernels was not
encrypted.

BSD IPSec to BSD IPSec (encrypted): The fourth test measured the throughput between
two modified BSD 2.1 kernels which incorporated NRL's IPv6/IPSec code. During this test,
the kernels encrypted their communication.

DTE to DTE (encrypted): The fifth test measured the throughput between two phase two DTE
kernels using encryption.

Each test was conducted using the netperf benchmarking tool, which measured TCP throughput
performance in a series of 8 trials. Each trial used a different message size, ranging from 128 bytes
to 32768 bytes. In all trials, the send and receive sockets were given 8192-byte buffer capacities.
The test results are correct within +/- 2.5%.

The results illustrate a number of interesting points. For instance, the unmodified BSD kernel
performance is worse than both the encrypted and non-encrypted performance of the modified BSD
IPSec kernel for messages of 512 bytes or less. This is probably due to the modified kernel's NRL

July 22, 1997 40

Message

Throughput (106bits/second)

BSD to BSD BSD IPSec DTE to DTE BSD IPSec DTE to DTE

Size (non-encrypted) to BSD IPSec (non-encrypted) to BSD IPSec (encrypted)

(bytes) (non-encrypted) (encrypted)

128 0.02 2.53 0.07 1.23 0.07

256 0.07 3.08 0.08 1.54 0.08

512 0.10 5.92 4.44 2.90 1.60

1024 7.73 7.13 7.60 3.04 2.38

2048 7.82 7.18 7.27 3.09 2.43

4096 7.84 7.12 7.25 3.11 2.45

8192 7.85 7.13 7.26 3.10 2.39

32768 7.84 7.15 7.26 3.08 2.45

Table 4: TCP/IP Throughput Performance Test Results

IPSec implementation, which is based on the 4.4BSD Lite-2 kernel's IP stack. This implementation
appears to be more efficient for small messages than the unmodified BSD 2.1 IP stack.

Most importantly, the results show that the phase two DTE prototype's throughput performance
with encryption lags behind the BSD IPSec kernel's by only a small margin. With optimization, the
DTE prototype's throughput with encryption might become more competitive with the performance

of the BSD IPSec kernel.

5.3.4 Compatibility

As validated by our experiments, the phase two DTE kernel is fully-compatible with non-DTE ker-
nels which use IPSec with the DES-CBC transform. The phase two kernel also remains compatible
with all IPv4-based non-DTE non-IPSec kernels, although their lack of IPSec support prevents
DTE kernels from cryptographically protecting any communication with them. This limitation
requires hosts with DTE kernels to avoid the use of cryptography when using services based on

non-DTE non-IPSec hosts.

The Distributed Name Service (DNS) provides a good example of this limitation on the use of
cryptography. In order for a DTE host to make use of a DNS server based on a non-DTE non-
IPSec host, its policy must not bind a key to the default output type of any domain that contains
processes which must query the DNS server. If the DTE host's policy binds a key to one of

July 22, 1997 41

ö
o
u
m
CO

CO v
■A

4->

tJl

o
u

5 -

-

 r i 1 i —i r i

 0 o

l]
1 LA— 4

y i /

r
/

/ /
/ /

/ /
/ /

/ /

BSD (no encryption) -©—
BSD/IPSec(no encryption) -+ -

DTE (no encryption) -a- -
BSD/IPSec (encryption) -x--

DTE(encryption) -&■ ■

-

/ 0
/ '

/ '
-

/ /

,, ^ I x- -
;/
if
/

/ ' A
v ' & /

'-' / / /
/ y \

• / \

■--''

/ ^

li= _^ i , , i i i

9 10 11 12 13
Base 2 Log of Message Size in Bytes

Figure 8: Throughput Performance

14 15

July 22, 1997 42

these default output types, its kernel will encrypt the DNS requests of that type and render them
unintelligible to the server. The DTE host's policy must also avoid binding a key to the default
output type of the domain it assigns to the DNS server's host. If the policy binds a key to this
type, the DTE host will expect the DNS server's replies to be encrypted. Since the DNS server's
host cannot encrypt these replies, the DTE host will discard them all.

July 22, 1997 43

6 Work in Progress

The main thrust of the third phase of the project is directed toward the development of the Domain
Type Authority (DTA). DTA development will require the support of several related efforts. These
efforts include the addition of automated configuration management features into the TIS Firewall
Toolkit (section 6.2), the development of module parameterization techniques (section 6.3), and
the introduction of configurable kernel meta-policy mechanisms (section 6.4). The DTA itself is
briefly described in section 6.1. Section 6.5 examines the possibility of reducing the dependency
restrictions on dynamic policy modules. Although it is not directly related to DTA development,
this improvement has the potential to increase the functionality of the prototype.

6.1 Domain Type Authority

The DTA is intended to be a globally available, fault-tolerant, distributed, trusted service that
distributes dynamic policy modules to DTE firewalls which need to establish distributed trust
relationships. It would allow network application clients and servers to automatically establish
safe expectations and limitations on their interactions. Figure 9 shows how the DTA is intended
to operate. When a client application attempts to establish communication with a remote service
for the first time, its DTE firewall queries the DTA and either receives a dynamic policy module
specific to that service or employs a default. In the diagram, the dashed arrows represent both the
requests made by each DTE firewall to the DTA for dynamic policy modules to govern their new
trust relationship, and the path of the dynamic policy modules the DTA sends in reply. Once both
enclaves have loaded the new dynamic policy modules, the client and the server may interact, as
shown by the solid arrows.

6.2 TIS Firewall Toolkit Enhancement

The TIS Firewall Toolkit used by the DTE firewall prototype is designed only for manual reconfig-
uration. As a DTE firewall loads and unloads dynamic policy modules from a DTA, it will need to
automatically reconfigure its application proxies. The third phase of the project will investigate the
automatic reconfiguration problems posed by the various firewall and network service configuration
files, including /usr/local/etc/netperm-table and /etc/inet.conf.

July 22, 1997 44

Internet

-* »- policy requests and replies
-* »- service requests and replies

Figure 9: Distributed Domain Type Authority (DTA)

6.3 Dynamic Module Parameterization

As described in section 2, most dynamic policy modules require a certain amount of glue to integrate
themselves with the base policy. The operation of the DTA must address this issue. The DTA
is intended to serve dynamic policy modules to a wide variety of hosts. Since these hosts might
have an equally wide variety of base policies, a given module must be capable of gluing itself into
a variety of base policies. In order to achieve this goal, the third phase of the project will also
investigate the possibility of adding parameterization to modules. Just as parameters to functions
allow the same function to be called with different arguments, parameterization would allow policy
modules to make use of different but operationally equivalent base policy domains and types.

July 22, 1997 45

6.4 Configurable Kernel Meta-policies

The third phase of the project will also investigate making the restrictions on dynamic module
behavior described in section 2.3 configurable at kernel boot-time. Using a new DTEL "load point"
mechanism we will investigate here, administrators might define one or more meta-policies which
specify which restrictions apply in particular situations. For example, administrators might define
a separate meta-policy for each DTA they use. Local trusted DTAs might be given generous meta-
policies which allow their dynamic policy modules to modify base policies with few restrictions.
Less-trusted remote DTAs might be given highly restrictive meta-policies which limit their dynamic
modules to only the most harmless behaviors.

6.5 Relaxed Dependency Restrictions

A variety of additional development possibilities exist which are not directly related to the main
DTA effort. The foremost among these is the possibility of relaxing the dependency restrictions
described in section 2.2. As that section noted, these restrictions limit the kinds of useful modules
a DTE kernel will accept. The scenario described in section 4 illustrates this point. The scenario
defines the Strider/Cogs alliance in a single module that is loaded to begin the joint venture and not
unloaded until it ends. As the project nears completion, a test engineer role might be desirable for
validation testing. This role would almost certainly require some access to development engineer
data. It would be convenient to add this role to the policy by loading a dynamic policy module
which assumes the gizmo.engJ type. Unfortunately, since this type is itself defined in a dynamic
policy module, this dependency would not be allowed by the phase two prototype.

The phase three prototype may address this issue by adopting a more complex model of inter-module
dependencies than the current base-part/dynamic-part arrangement. Dynamic policy modules
might be allowed to assume types and domains from other dynamic policy modules. We will
investigate whether the phase three prototype might arrange modules into directed acyclic graphs,
where each node in the hierarchy depends on the types and/or domains of its parents. All of the
nodes would then ultimately depend on the root of the graph, which would correspond to the
base policy. Development in this direction must proceed cautiously, however, since the complexity
introduced by this scheme might outweigh the benefits of its flexibility.

July 22, 1997 46

References

[1] R. Atkinson, "Security Architecture for the Internet Protocol", RFC 1825, August 1995.

[2] R. Atkinson, "IP Authentication Header", RFC 1826, August 1995.

[3] R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 1827, August 1995.

[4] L. Badger, K. Oostendorp, W. Morrison, K. Walker, C. Vance, D. Sherman, D. Sterne, "DTE
Firewalls Initial Measurement and Evaluation Report," Trusted Information Systems, Inc. TIS
Report #0632, September 26, 1996.

[5] L. Badger, K. Oostendorp, W. Morrison, K. Walker, C. Vance, D. Sherman, D. Sterne, "DTE
Firewalls Initial Measurement and Evaluation Report," Trusted Information Systems, Inc. TIS
Report #0632R.

[6] K. Oostendorp, L. Badger, C. Vance, W. Morrison, D. Sherman, D. Sterne, "Domain and Type
Enforcement Firewalls." Trusted Information Systems, Inc. Submitted to the 1997 Annual
Computer Security Applications Conference (ACSAC).

[7] L. Badger, D. Sterne, D. Sherman, K. Walker, "A Domain and Type Enforcement UNIX
Prototype," Usenix Computing Systems Volume 9, Cambridge, MA, 1996.

[8] W.E. Boebert and R.Y. Kain, "A Practical Alternative to Hierarchical Integrity Policies,"
Proceedings of the 8th National Computer Security Conference, Gaithersburg, MD, p. 18,
1985.

[9] K. Djahandari, W. Morrison, L. Badger, T. Fräser, T. Horvath, K. Oostendorp, M. Petkac,
D. Sherman, C. Vance, "DTEL User's Guide," Trusted Information Systems, Inc. TIS Report
#0659D.

[10] P. Karn, P. Metzger, W. Simpson, "The ESP DES-CBC Transform", RFC 1829, August 1995.

[11] P. Metzger, W. Simpson, "IP Authentication using Keyed MD5", RFC 1828, August 1995.

[12] W. Morrison, T. Fräser, L. Badger, K. Oostendorp, K. Djahandari, T. Horvath, M. Petkac, D.
Sherman, C. Vance, "Distributed Type-Enforcing Firewall Architecture," Trusted Information
Systems, Inc. TIS Report #0667. April 30, 1997.

[13] K. Walker, D. Sterne, L. Badger, M. Petkac, D. Sherman, K. Oostendorp, "Confining Root
Programs with Domain and Type Enforcement.", Proceedings of the 6th Usenix Security
Symposium, San Jose, CA, 1996.

July 22, 1997 47

A Strider Base Policies

A.l Firewall Policy

The following policy was used as the base firewall policy for the Strider Corporation in Phase 2
development. As discussed in subsection 4.1, it is primarily a subset of the Phase 1 policy.

#define SHELLS (/bin/{sh,csh,tcsh}, /usr/contrib/bin/tcsh)
/* *
* Common component for FW and host. Provides initial domains and an

* administrative login. The comm_c component holds access to

* communications types thay may be sent to us; it is extended below.

*/
policy base_p;

type unix_t, anon_t;

component comm_c = (rd->unix_t);

component user_c = comm_c;

domain anon_d = (crw->anon_t), user_c;
domain daemon.d = (/sbin/init), (crwxd->unix_t), (auto->login_d),

comm_c, privswapon;
domain login.d = (/usr/bin/login), (crwxd->unix_t), privauth,

(exec->admin_d);

domain admin_d = SHELLS, (crwxd->unix_t), user_c,
privlog, privdtmod, privswapon,

privencrypt, privreboot, privload,
(sigkill,sighup,sigtstp -> daemon.d);

initial_domain = daemon_d;
mount (/dev/sdOa, /), (/dev/sdOh, /usr), (/dev/sdOg, /usr/home);

inet_assign anon_d 0.0.0.0;

assign -r unix_t /;

/* *
* Common component for FW and host. Defines domains/types required by

* the DTE kernel and also specifies what systems are running DTE.

*/
module required_m;

assumes type unix_t, nfs_t;

July 22, 1997 48

assumes domain daemon.d, comm_c;

domain daemon_d += (auto->nfsd_d, nfsio_d);

component nfs_c = (cr->nfs_t), (rwd->unix_t), comm.c;

domain nfsd_d = (/sbin/nfsd), nfs_c;

domain nfsio.d = (/sbin/nfsiod), nfs_c;

dte.systems (stridHost, 11.22.33.2), (stridFw, 11.22.33.1);

/* *

* Used only on the firewall. Defines a domain to switch proxies into

* separate domains.

*/
module switch_m;

assumes type unix_t;
assumes domain daemon_d, admin_d, login_d, comm_c;

type fw_t, bin_t, fw_auth_t;
domain daemon.d += (rx->bin_t, fw_t), (auto->fw_d);

domain admin_d += (rwxd->fw_t, bin_t),
(sigkill,signup, sigtstp->fw_d);

domain login_d += (rx->bin_t), (r->fw_t);

domain comm_c += (r->fw_t);

domain fw_comm_c;
domain fw_d = (/usr/local/etc/{netacl, authsrv}), (crwxd->fw_t),

(rd->unix_t), (rx->bin_t), (rw->fw_auth_t),

fw_comm_c;

assign -s bin_t /bin/cat;
assign -s fw_auth_t /usr/local/etc/{fw-authdb,fw-authdb.db>;

/* *

* Used only on the firewall. Defines user domain names and types to be

* passed through the firewall proxies, and associates user domains with

* non-DTE systems (which must have default output types).

*/
module talkto_hosts_m;

assumes type anon_t;
assumes domain comm_c, fw_comm_c, anon_d, daemon_d;

type strid_t;
component fw_comm_c += (rw->anon_t, strid.t), (srcd->anon_d, strid_d);

domain dtacl_d;
domain daemon_d += (r->strid_t, anon_t);

July 22, 1997 49

domain strid_d = (crw->strid_t), comm.c;

inet_assign strid_d 11.22.33.3;

/* *
* Used only on the firewall. Defines the rlogin/TELNET proxy domain.

*/
module fw_rlogin_m;

assumes type fw_t, unix_t;

assumes domain fw_comm_c, fw_d;

domain fw_d += (auto->fw_rlogin_d);

domain fw_rlogin_d = (/usr/local/etc/{rlogin-gw, tn-gw}),
(crwd->fw_t), (rd->unix_t), privauth, fw_comm_c;

/* *

* Used only on the firewall. Defines the ftp proxy domain.

*/
module fw_ftp_m;

assumes type fw_t, unix_t;

assumes domain fw_comm_c, fw_d;

domain fw_d += (auto->fw_ftp_d);
domain fw_ftp_d = (/usr/local/etc/ftp-gw),

(crw->fw_t), (rd->unix_t), privauth, fw_comm_c;

/* *
* Used only on the firewall. Defines the NFS mount daemon proxy domain.

* The portmap_d needs to reply back to any client in the type the client

* sent.

*/
module fw_nfs_m;

assumes type fw_t, unix_t, nfs_t;
assumes domain fw_comm_c, daemon_d, admin_d, nfsio_d, nfsd_d;
domain daemon_d += (auto->fw_mount_d, fw_nfs_d, portmap_d),(r->nfs_t);

domain portmap_d = (/usr/sbin/portmap), fw_comm_c,
(rwd->fw_t), (crwd->unix_t), (srcd->admin_d);

domain fw_mount_d = (/usr/local/etc/stirrup), (rwd->fw_t),
(crwd->unix_t), fw_comm_c, (srcd->admin_d);

domain fw_nfs_d = (/usr/local/etc/nfs-gw), (rwd->fw_t),
(cr->nfs_t), (rwd->unix_t), fw_comm_c,

(srcd->admin_d, nfsd_d, nfsio_d);

July 22, 1997 50

/*
* Used only on the firewall. Defines the http proxy domain.

*/
module fw_http_m;

assumes type fw_t, unix_t;

assumes domain fw_comm_c, fw_d;

domain fw_d += (auto->fw_http_d);

domain fw_http_d = (/usr/local/etc/http-gw), (crwd->fw_t),

(rd->unix_t), privauth, fw_comm_c;

/* *

* Used only on the firewall. Defines the mail domains. Smapd execs

* sendmail.

*/
module fw_mail_m;

assumes type fw_t, unix_t;

assumes domain daemon_d, anon_d,strid_d, user_c;

type tmp_t,spool_t;
component user_c += (d->unix_t); /* sendmail needs shared libs */

domain daemon_d += (rw->tmp_t), (auto->mail_d);

domain admin_d += (rw->tmp_t);
domain anon_d += (/usr/sbin/sendmail), (rw->tmp_t), (rdm->spool_t);

domain strid.d += (/usr/sbin/sendmail), (rw->tmp_t), (rdm->spool_t);
domain mail_d = (/usr/local/etc/{smapd,smap>,/usr/sbin/sendmail,

/usr/libexec/mail.local),
(cr->fw_t), (rmd->spool_t),(rd->unix_t),

(r->anon_t, strid_t),
(exec->anon_d, strid_d);

-s tmp_t /dev/null; assign

assign

tmp.
spool_t /usr/var/spool/-Cmqueue, smap};

July 22, 1997 51

A.2 Host Policy

The following policy was used as the base host policy for the Strider Corporation in Phase 2
development. As discussed in subsection 4.1, it is primarily a subset of the Phase 1 policy.

#define SHELLS (/bin/{sh,csh,tcsh}, /usr/contrib/bin/tcsh)
«define PROGS SHELLS, (/usr/libexec/{rlogind, telnetd, ftpd}, \

/usr/contrib/bin/httpd)
/* *

* Common component for FW and host. Provides initial domains and an
* administrative login.
*/

policy base_p;
type unix_t, anon_t;

component comm_c = (r->unix_t);

component user_c = comm_c;
domain anon_d = (crw->anon_t), user_c;

domain daemon.d = (/sbin/init), (crwxd->unix_t), (auto->login_d),

comm_c, privswapon;

domain login.d = (/usr/bin/login), (crwxd->unix_t), privauth,

(exec->admin_d);

domain admin_d = SHELLS, (crwxd->unix_t), user_c,
privlog, privdtmod, privswapon,

privencrypt, privreboot, privload,

(sigkill,signup,sigtstp -> daemon.d);

initial_domain = daemon_d;
mount (/dev/sdOa, /), (/dev/sdOh, /usr), (/dev/sdOg, /usr/home);

inet_assign anon_d 0.0.0.0;

assign -r unix_t /;

/* *
* Common component for FW and host. Defines domains/types required by

* the DTE kernel and also specifies what systems are running DTE.

*/
module required_m;

assumes type unix_t;

assumes domain admin_d, daemon_d, comm_c;

July 22, 1997 52

type nfs_t;

domain admin_d += (rw->nfs_t);
domain daemon_d += (auto->nfsd_d, nfsio_d), (r->nfs_t);

component nfs_c = (cw->nfs_t), (rwd->unix_t), comm_c;
domain nfsd_d = (/sbin/nfsd),(cw->nfs_t), (rwd->unix_t), comm_c;

domain nfsio_d = (/sbin/nfsiod), (cw->nfs_t), (rwd->unix_t),

comm_c;

dte.systems (stridHost, 11.22.33.2), (stridFw, 11.22.33.1);

/* *

* Used only on hosts. Defines types and domain names needed to communicate

* with the firewall.

*/
module talkto_fw_m;

assumes domain comm_c;

type fw_t, bin_t;

component comm_c += (r->fw_t);

domain fw_d, fw_ftp_d, fw_http_d, fw_rlogin_d,

mail_d, fw_mount_d, fw_nfs_d;

/* *
* Used only on hosts. Define shared /tmp and pty access for user domains.

* Defines a restricted regrade domain. More root confinement would happen

* here.

*/
module host_m;

assumes type unix_t;
assumes domain admin.d, login.d, daemon.d, user.c;

type tmp_t, term_t, http_t;

domain login_d += (exec->regrade_d);

domain admin_d += (rwd->http_t);
domain daemon.d += (rdm->tmp_t),(fw->term_t),(auto->dtacl_d,portmap_d);

component user_c += (rdx->unix_t), (rdm->tmp_t), (rw->term_t),

(wd->http_t);
domain portmap_d = (/usr/sbin/portmap,/sbin/mountd), (crwd->unix_t);

domain dtacl_d = (/usr/bin/dtacl), login.d, (crwxd->unix_t), privauth;

domain regrade.d = SHELLS, (/bin/{ls,cp,mkdir,rm}, /usr/bin/dti),

(crwd->unix_t);

assign -r tmp_t /tmp;

July 22, 1997 53

assign -r tmp_t

assign -s term_t

assign -u http_t

assign term_t

/usr/var/tmp;

/dev/null;
/usr/var/log/httpd;

/dev/{ttypO,ttyp1,ttyp2,ttyp3,ttyp4,
ptyp0,ptypl,ptyp2,ptyp3,ptyp4};

/* *

* Used only on hosts. Define user domains to confine network applications.

* For client-mode, run in a user session; for server-mode, activate from

* dtacl.

*/
module user_domains_m;

assumes type anon_t, nfs_t;
assumes domain admin_d, regrade_d, dtacl_d,login_d, user_c,

anon_d, portmap_d;

type strid_t;

/* plug into rest of policy */
domain admin.d += (rwd->strid_t, anon_t),

(sigkill,signup,sigtstp->strid_d,anon_d);

domain dtacl_d += (r->strid_t, anon.t), (exec->strid_d, anon_d);

domain regrade_d += (rwd->strid_t, anon_t);

domain login_d += (exec->strid_d, anon_d);

domain portmap_d += (rw->strid_t, anon_t, nfs_t),
(srcd->strid_d, anon_d);

/* user execution environments */

domain anon_d += PROGS, (dx->anon_t);

domain strid.d = PROGS, (crwdx->strid_t), user_c, privauth;

assign -r anon_t /usr/home/anon, /www/docs/public;

assign -r strid.t /usr/home/strid, /www/docs/private;

module dns_m;
assumes type unix_t, anon_t, strid_t;
domain dns_d = (r->anon_t, strid_t, nfs_t), (crw->unix_t);

inet_assign dns_d 11.22.33.99;

module mail_m;
assumes type anon_t, strid_t, tmp_t;

July 22, 1997 54

assumes domain anon_d, strid_d, admin_d;
type spool_t;
domain admin_d += (rdm->spool_t);

domain anon_d += (/usr/sbin/sendmail), (rdm->spool_t)

domain strid.d += (/usr/sbin/sendmail), (rdm->spool_t)

domain daemon_d += (/usr/sbin/sendmail), (rdm->spool_t)

assign spool_t /usr/var/spool/mqueue;

assign spool_t /usr/var/mail;

July 22, 1997 55

B Strider Dynamic Modules

A common need for all dynamic modules is to reference the DTE base policy types and domains.
Dynamic modules may reference base types and domains by using the DTEL assumes type and as-
sumes domain statements. Both host and firewall dynamic policies contain the assume statements.
Each also declares the new data types, gizmo-budget-t, gizmo.rates.t, and gizmo .eng.t and an as-
sociated key for encryption of all Gizmo generated IP messages.23 The encryption of IP messages
is a vital requirement in our notion of an enterprise zone.

B.l Firewall Dynamic Module

The base policy of the firewall includes a base module, talkto.host.m, that defines user elements
to be passed through the firewall by proxy applications, a base module, switch-m, that creates
an execution environment (fw-d) to start the proxies in their own domain, and base modules for
each firewall proxy. These base modules require augmentation by the firewall dynamic module to
support the enterprise zone.

The firewall policy must identify the Donald's firewall in a DTEL dtesystems statement to en-
sure all proper DTE header information is included in IP message exchange. The gizmojproj-d,
gizmo-acct-d, and gizmo-eng-d domain names must be defined for the firewall to recognize Gizmo
client domains and properly process requests and responses. The firewall's inetd daemon auto-
matically transitions to the fw-d domain to activate the firewall toolkit's netacl program. The
netacl program reads data from the client socket requiring read access to each of the Gizmo data
types. The netacl program automatically transitions the domain of the requested proxy to start
the firewall proxy program. In order to pass the data type through the firewall, the firewall proxies
for the FTP, RLOGIN, TELNET, NFS, and HTTP services must be able to read and write the data
type. Additionally, in order to relay the source domain of received messages, each of these proxies
must have srcd access to the source domains they receive. The HTTP proxy fwJittp.d domain and
the NFS proxy fw-nfs-d domain, which may be accessed by each of the three Gizmo domains, have
read and write access to all three Gizmo data types as well as srcd access to each Gizmo domain.
However, the proxy domains fw~rlogin-d for processing of RLOGIN and TELNET and fw-ftp-d for
FTP request processing, only have read and write access to the gizmo-budget J. and srcd access to
gizmojprojA since only the project leader role has FTP, RLOGIN, and TELNET access. The
firewall's MAIL proxy is unique from the other proxies and requires read access to each of the Gizmo
types and exec access to transition to each of the Gizmo domains. The /usr/sbin/sendmail entry
point and accesses for the gizmojprojA, gizmo-acct-d, and gizmo-engjd domains are also necessary

23 If desired, each Gizmo data type could be assigned a unique key.

July 22, 1997 56

for MAIL processing. Some of the Gizmo user domain accesses would also be necessary if a DTEL
inet.assign statement specifying a Gizmo domain was included in the dynamic policy.

The following module was used as the dynamic firewall module for the Strider Corporation in Phase
2 development.

module fw_gizmo_m;

assumes type fw_t, spool.t, tmp_t, unix_t;

assumes domain daemon.d, fw_d, fw_ftp_d, fw_http_d, fw_nfs_d,

fw_rlogin_d, mail_d, comm_c;

type gizmo_budget_t, gizmo_rates_t, gizmo_eng_t;

component mail_c = (/usr/sbin/sendmail), (rw->tmp_t), (rdm->spool_t) ,

rd->unix_t), (r->fw_t);

/*
* Domains corresponding to the base policy talkto_host_m module

*/
domain gizmo_proj_d = (crw->gizmo_budget_t), mail_c;

domain gizmo_acct_d = (crw->gizmo_rates_t), mail_c;

domain gizmo_eng_d = (crw->gizmo_eng_t), mail_c;

/*
* Domains corresponding to the base policy switch_m module

*/
domain fw_d += (r->gizmo.budget_t, gizmo_rates_t, gizmo_eng_t);

/*
* Domains corresponding to the base policy proxy modules

*/
domain fw_ftp_d += (rw->gizmo_budget_t), (srcd->gizmo_proj_d);
domain fw_http_d += (rw->gizmo.budget_t, gizmo_rates_t, gizmo_eng_t),

(srcd->gizmo_proj_d, gizmo_acct_d, gizmo_eng_d);
domain fw_nfs_d += (rw->gizmo_budget_t, gizmo_rates_t, gizmo_eng_t),

(srcd->gizmo_proj_d, gizmo_acct_d, gizmo_eng_d);

July 22, 1997 57

domain fw_rlogin_d += (rw->gizmo_budget_t), (srcd->gizmo_proj_d);

domain mail_d += (r->gizmo.budget_t, gizmo_rates_t, gizmo_eng_t),
(exec->gizmo_proj_d, gizmo_acct_d, gizmo_eng_d);

dte.systems (donaldsFw, 22.33.44.1);

key esp gizmo.k = (0x0123456789abcdef 0xlill22223333)->gizmo_budget_t,
gizmo_rates_t, gizmo_eng_t;

July 22, 1997 58

B.2 Host Dynamic Module

The host dynamic module description closely follows the dynamic module specification described
in section 4.2. The base policy's user.domainsjm module is the primary module requiring aug-
mentation. The gizmo-proj-d, gizmo.acct-d, and gizmo.eng-d domains define the user roles of the
alliance. The login^d domain is augmented to allow transitions to each user domain for local host
logins. Each of the Gizmo user domains contain the gizmo.user-c component giving the user log-
ging into the local host machine necessary access to base policy data to accomplish normal tasks.
The gizmojuser-c component is comprised of the base policy commie component and access to the
spooLt type, used in mail processing. Each domain has full access to the data type associated with
its domain (e.g. gizmo-engJ, for the gizmo..eng-d domain) and additional access to other Gizmo
data types given in the specifications. Most of the alliance work is to be done via NFS and each
organization's host is both an NFS server and an NFS client. The DTEL mount statement specifies
the file system to be mounted. The NFS domains, nfsd.d and nfsio^d, are given read, write, and
directory traversal access to all three Gizmo data types to perform NFS operations. The dns-d
domain is augmented to read DNS requests for each Gizmo user domain. The augmentation of the
dtacLd domain, and the non-shell entry points of the Gizmo user domains ensure that exported
services are started in the proper user domain. Regrade rules are also included for each Gizmo data
type.

The following module was used as the dynamic host module for the Strider Corporation in Phase
2 development.

/*
* The common entry point programs for all dynamic module defined domains

*/
#define SHELLS (/bin/{sh,csh,tcsh}, /usr/contrib/bin/tcsh)

»define COMMON.PROGS (/usr/contrib/bin/httpd, /usr/sbin/sendmail)

module host_gizmo_m;

assumes type fw_t, unix_t, tmp_t, term_t, http_t, spool_t, nfs_t;

assumes domain dns_d, dtacl_d, login_d, nfsd_d, nfsio_d, strid_d;

type gizmo_rates_t, gizmo„budget_t, gizmo_eng_t;

regrade (gizmo_rates_t->unix_t);
regrade (gizmo_budget_t->unix_t);

regrade (gizmo_eng_t->unix_t);

July 22, 1997 59

component gizmo_user_c = (rw->nfs_t, term_t), (rdx->unix_t),
(rdm->tmp_t, spool_t), (wd->http_t), (r->fw_t);

domain gizmo_proj_d = SHELLS, COMMON.PROGS,
(/usr/libexec/{rlogind, telnetd, ftpd}),

(crwxd->gizmo_budget_t),

(rd->gizmo_rates_t, gizmo_eng_t),

gizmo_user_c;

domain gizmo_acct_d = SHELLS, COMMOM.PROGS,
(crwxd->gizmo_rates_t), (rd->gizmo_biidget_t),

gizmo_user_c;

domain gizmo_eng_d = SHELLS, C0MM0N_PR0GS,

(crwxd->gizmo_eng_t),

gizmo_user_c;

domain dns_d += (r->gizmo_budget_t, gizmo_rates_t, gizmo_eng_t);
JJ n J ._ /-- -* —2 1 3 j- -i. —z

f d

New Text Document.txt

22 JANUARY 1998

This paper was downloaded from the Internet.

Distribution Statement A: Approved for public release;
distribution is unlimited.

POC: ROME LAB
COMPUTER SYSTEMS BRANCH
ROME, NY 13441-3625

